105 research outputs found

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    OLIMPO, An Ad-Hoc Wireless Sensor Network Simulator for Public Utilities Applications

    Get PDF
    This paper introduces OLIMPO, an useful simulation tool for researchers who are developing wireless sensor communication protocols. OLIMPO is a discreteevent simulator design to be easily recon gured by the user, providing a way to design, develop and test communication protocols. In particular, we have designed a self-organizing wireless sensor network for low data rate. Our premise is that, due to their inherent spread location over large areas, wireless sensor networks are well-suited for SCADA applications, which require relatively simple control and monitoring. To show the facilities of our simulator, we have studied our network protocol with OLIMPO, developing several simulations. The purpose of these simulations is to demonstrate, quantitatively, the capability of our network to support this kind of applications

    Network Investigation and Performance Analysis of ZigBee Technology using OPNET

    Get PDF
    Abstract- Communication has become inevitably part of our day to day activities, in academic, business, banking, and other sectors. It has therefore become so important to implement good and efficient communication system. A reference point according to this research is the wireless sensor networking (WSN) system, and most important thing in communication is to be free from interference, attenuation, crosstalk, and fading. Any of these factors is a serious problem in communication system. To solve these problems, mobile and fixed nodes networks were considered for efficient operation of WSN when ZigBee technology was employed and designed using the OPNET when certain network parameters: Throughput (bits/s), load (bits/s), and end-to end delay (second) parameters from fixed and mobile networks were compared and considered for smooth operation of WSN that is free from interference, attenuation, crosstalk and fading. The network investigation and performance analysis of fixed and mobile networks were based on tree, star and mesh topologies between the two systems. After considering all the parameters for various analyses, the fixed network was considered the most suitable over the mobile network for WSN

    Investigation of Wireless LAN for IEC 61850 based Smart Distribution Substations

    Get PDF
    The IEC 61850 standard is receiving acceptance worldwide to deploy Ethernet Local Area Networks (LANs) for electrical substations in a smart grid environment. With the recent growth in wireless communication technologies, wireless Ethernet or Wireless LAN (WLAN), standardized in IEEE 802.11, is gaining interest in the power industry for substation automation applications, especially at the distribution level. Low Voltage (LV) / Medium Voltage (MV) distribution substations have comparatively low time-critical performance requirements. At the same time, expensive but high data-rate fiber-based Ethernet networks may not be a feasible solution for the MV/LV distribution network. Extensive work is carried out to assess wireless LAN technologies for various IEC 61850 based smart distribution substation applications: control and monitoring; automation and metering; and over-current protection. First, the investigation of wireless LANs for various smart distribution substation applications was initiated with radio noise-level measurements in total five (27.6 and 13.8 kV) substations owned by London Hydro and Hydro One in London, ON, Canada. The measured noise level from a spectrum analyzer was modeled using the Probability Distribution Function (PDF) tool in MATLAB, and parameters for these models in the 2.4 GHz band and 5.8 GHz band were obtained. Further, this measured noise models were used to simulate substation environment in OPNET (the industry-trusted communication networking simulation) tool. In addition, the efforts for developing dynamic models of WLAN-enabled IEC 61850 devices were initiated using Proto-C programming in OPNET tool. The IEC 61850 based devices, such as Protection and Control (P&C) Intelligent Electronic Devices (IEDs) and Merging Unit (MU) were developed based on the OSI-7 layer stack proposed in IEC 61850. The performance of various smart distribution substation applications was assessed in terms of average and maximum message transfer delays and throughput. The work was extended by developing hardware prototypes of WLAN enabled IEC 61850 devices in the R&D laboratory at University of Western Ontario, Canada. P&C IED, MU, Processing IED, and Echo IED were developed using industrial embedded computers over the QNX Real Time Operating System (RTOS) platform. The functions were developed using hard real-time multithreads, timers, and so on to communicate IEC 61850 application messages for analyzing WLAN performance in terms of Round Trip Time (RTT) and throughput. The laboratory was set up with WLAN-enabled IEC 61850 devices, a commercially available WLAN Access Point (AP), noise sources, and spectrum and network analyzers. Performance of various smart distribution substation applications is examined within the developed laboratory. Finally, the performance evaluation was carried out in real-world field testing at 13.8 and 27.6 kV distribution substations, by installing the devices in substation control room and switchyard. The RTT of IEC 61850 based messages and operating time of the overcurrent protection using WLAN based communication network were evaluated in the harsh environment of actual distribution substations. The important findings from the exhaustive investigation were discussed throughout this work

    A wireless mesh network for smart metering

    Get PDF

    A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    Get PDF
    This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh) to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This threshold is at a relatively low number of nodes (50) and the use of network topologies such as tree or mesh helps alleviate this problem and results in lower network delays. Further simulations found that the successful transmission of application layer packets in a 70-end node tree network can be improved by 212% when end nodes only transmit data to their nearest router node. The relationship between packet success rate and different packet sizes was also investigated and reducing the packet size with a factor of 16 resulted in either 156% or 300% increases in the amount of successfully received packets depending on the network setup

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    OLIMPO, an ad-hoc wireless sensor network simulator for optimal scada-applications

    Get PDF
    This paper introduces OLIMPO, an useful simulation tool for researchers who are developing wireless sensor communication protocols. OLIMPO is a discrete-event simulator design to be easily recon gured by the user, providing a way to design, develop and test communication protocols. In particular, we have designed a self-organizing wireless sensor network for low data rate. Our premise is that, due to their inherent spread location over large areas, wireless sensor networks are well-suited for SCADA applications, which require relatively simple control and monitoring. To show the facilities of our simulator, we have studied our network protocol with OLIMPO, developing several simulations. The purpose of these simulations is to demonstrate, quantitatively, the capability of our network to support this kind of applications

    Design, Simulation, and Verification Techniques for Highly Portable and Flexible Wireless M-Bus Protocol Stacks

    Full text link

    Latency Optimization in Smart Meter Networks

    Get PDF
    In this thesis, we consider the problem of smart meter networks with data collection to a central point within acceptable delay and least consumed energy. In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets. Considering these constraints, we propose an enhancement in RPL to ensure link reliability and low latency. The proposed new additive composite metric is Delay-Aware RPL (DA-RPL). Moreover, we propose a repeaters’ placement algorithm to meet the latency requirements. The performance of a realistic RF network is simulated and evaluated. On top of the routing solution, new asynchronous ordered transmission algorithms of UDP data packets are proposed to further enhance the overall network latency performance and mitigate the whole system congestion and interference. Experimental results show that the performance of DA-RPL is promising in terms of end-to-end delay and energy consumption. Furthermore, the ordered asynchronous transmission of data packets resulted in significant latency reduction using just a single routing metric
    corecore