730 research outputs found

    Design, manufacture and spin test of high contact ratio helicopter transmission utilizing Self-Aligning Bearingless Planetary (SABP)

    Get PDF
    A 450 hp high ratio Self-Aligning Bearingless Planetary (SABP) for a helicopter application was designed, manufactured, and spin tested under NASA contract NAS3-24539. The objective of the program was to conduct research and development work on a high contact ratio helical gear SABP to reduce weight and noise and to improve efficiency. The results accomplished include the design, manufacturing, and no-load spin testing of two prototype helicopter transmissions, rated at 450 hp with an input speed of 35,000 rpm and an output speed of 350 rpm. The weight power density ratio of these gear units is 0.33 lb hp. The measured airborne noise at 35,000 rpm input speed and light load is 94 dB at 5 ft. The high speed, high contact ratio SABP transmission appears to be significantly lighter and quieter than comtemporary helicopter transmissions. The concept of the SABP is applicable not only to high ratio helicopter type transmissions but also to other rotorcraft and aircraft propulsion systems

    Transmission research activities at NASA Lewis Research Center

    Get PDF
    A joint research program, to advance the technology of rotorcraft transmissions, consists of analytical and experimental efforts to achieve the overall goals of reducing transmission weight and noise, while increasing life and reliability. Recent activities in the areas of transmission and related component research are highlighted. Current areas include specific technologies in support of military rotary wing aviation, gearing technology, transmission noise reduction studies, a recent interest in gearbox diagnostics, and advanced transmission system studies. Results of recent activities are presented along with near term research plans

    Advanced gearbox technology

    Get PDF
    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress

    Identification and proposed control of helicopter transmission noise at the source

    Get PDF
    Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed

    Mechanical Systems Technology Branch research summary, 1985 - 1992

    Get PDF
    A collection of significant accomplishments from the research of the Mechanical Systems Technology Branch at the NASA Lewis Research Center completed during the years 1985-1992 is included. The publication highlights and accomplishments made in bearing and gearing technology through in-house research, university grants, and industry contracted projects. The publication also includes a complete listing of branch publications for these years

    Influence of centrifugal compressor system components on its general rotordynamic characteristics

    Get PDF
    Nowadays most countries are depending on Oil and Gas for their energy supply. In such operations, centrifugal compressors are dominating most of the used critical machines hence it is important to give these turbomachines more consideration in terms of their technical performance and reliability. Centrifugal compressors are one of many turbomachines that require technical solutions for Enhanced Oil Recovery (EOR). The oil and gas fields have different production environments which require adequate selection of compressors to handle the variance in gas and oil specifications and this in turn force the equipment manufacturers to revise their currently used design specifications. This research presents different types of compressors and their work principles with an emphasis on centrifugal compressor components The literature review carried in this research describes different cases in turbomachinery rotordynamics where failures were encountered at the commissioning and operation stages. Also the literature shows how these machines are improved technically by improving the compressor components performance such using Pocket Damper seals and tilting type bearings. The aim of this research is to study the factors affecting Rotordynamic behaviour of large natural gas centrifugal compressors. The study will review the influence of various conditions of rotor components such as bearings, seals, impellers, etc on the overall Rotordynamic stability at various process conditions ... [cont.]

    Helicopter transmission testing at NASA Lewis Research Center

    Get PDF
    The helicopter has evolved into a highly valuable air mobile vehicle for both military and civilian needs. The helicopter transmission requires advanced studies to develop a technology base for future rotorcraft advances. A joint helicopter transmission research program between the NASA Lewis Research Center and the U.S. Army Aviation Systems Command has existed since 1970. Program goals are to reduce weight and noise and to increase life and reliability. The current experimental activities at Lewis consist of full-scale helicopter transmission testing, a base effort in gearing technology, and a future effort in noise reduction technology. The experimental facilities at Lewis for helicopter transmission testing are described. A description of each of the rigs is presented along with some significant results and near-term plans

    Effect of inner stiffeners on vibration and noise levels of gearbox housing without changing the mass

    Get PDF
    Especially, with the advancement of technology, mechanical parts need to be designed to be lighter and more durable. In the industry, gears are the most common power transmission equipment, and for this equipment, increasing durability and rigidity has an essential importance. During power transmission, undesired vibration and noise arise in gear systems. In addition to gear design, gearbox housing design is also essential to reduce the radiation of undesired structure-borne noise and vibration. In order to reduce noise and vibration levels, some modifications are frequently used on gearbox housings. In this study, three different gearbox housing designs (basic, cross and cellular) are formed and analysed by using ANSYS® software. The design alternatives for housings have been formed inside of the structure as different quantities of longitudinal and transverse stiffeners. In addition, all the external dimensions and the mass of these three housing designs are equal in order to observe just vibration and noise reduction. Fast Fourier Transform (FFT), statistical properties of vibration signals and sound levels of the gearbox have used for comparisons to determine which gearbox have better vibration and sound levels

    Dynamic coupled vibration analysis of a large wind turbine gearbox transmission system

    Get PDF
    A lumped-parameter coupled nonlinear dynamic model for one large multi-stage wind turbine gearbox transmission system is established comprehensively including wind varying load, mesh stiffness, dynamic transmission error, gravity, and bearing nonlinear characteristics to obtain the gearbox dynamic response. The vibration differential equations of the drive-train are deduced through the Lagrange’s equation. On the basis of that, the dynamics of wind turbine gearbox is investigated by a Runge-Kutta numerical method that includes simultaneous internal and external excitations. The results show that the dynamic response of the partial component is mainly superposed by high-frequency component caused by the internal excitation and low-frequency component caused by the external excitation. In medium-speed stage and high-speed stage, the vibration amplitude has obvious fluctuation, and the multiple frequency and random frequency components become increasingly obvious with increasing rotational speed and eccentricity at gear and bearing positions. Axial vibrations of the system also have some fluctuation. The bearing has self-variable stiffness frequency, which should be avoided in engineering design stage. The study results provide a theoretical foundation for dynamical characteristics evaluation and dynamic optimization of a large wind turbine gearbox transmission system
    corecore