5,105 research outputs found

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    Get PDF
    Energy efficiency is a major concern in modern high-performance computing system design. In the past few years, there has been mounting evidence that power usage limits system scale and computing density, and thus, ultimately system performance. However, despite the impact of power and energy on the computer systems community, few studies provide insight to where and how power is consumed on high-performance systems and applications. In previous work, we designed a framework called PowerPack that was the first tool to isolate the power consumption of devices including disks, memory, NICs, and processors in a high-performance cluster and correlate these measurements to application functions. In this work, we extend our framework to support systems with multicore, multiprocessor-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency, and its interaction with application executions. In addition, we use PowerPack to study the power dynamics and energy efficiencies of dynamic voltage and frequency scaling (DVFS) techniques on clusters. Our experiments reveal conclusively how intelligent DVFS scheduling can enhance system energy efficiency while maintaining performance

    The Case for a Factored Operating System (fos)

    Get PDF
    The next decade will afford us computer chips with 1,000 - 10,000 cores on a single piece of silicon. Contemporary operating systems have been designed to operate on a single core or small number of cores and hence are not well suited to manage and provide operating system services at such large scale. Managing 10,000 cores is so fundamentally different from managing two cores that the traditional evolutionary approach of operating system optimization will cease to work. The fundamental design of operating systems and operating system data structures must be rethought. This work begins by documenting the scalability problems of contemporary operating systems. These studies are used to motivate the design of a factored operating system (fos). fos is a new operating system targeting 1000+ core multicore systems where space sharing replaces traditional time sharing to increase scalability. fos is built as a collection of Internet inspired services. Each operating system service is factored into a fleet of communicating servers which in aggregate implement a system service. These servers are designed much in the way that distributed Internet services are designed, but instead of providing high level Internet services, these servers provide traditional kernel services and manage traditional kernel data structures in a factored, spatially distributed manner. The servers are bound to distinct processing cores and by doing so do not fight with end user applications for implicit resources such as TLBs and caches. Also, spatial distribution of these OS services facilitates locality as many operations only need to communicate with the nearest server for a given service

    Parallel Discrete Event Simulation with Erlang

    Full text link
    Discrete Event Simulation (DES) is a widely used technique in which the state of the simulator is updated by events happening at discrete points in time (hence the name). DES is used to model and analyze many kinds of systems, including computer architectures, communication networks, street traffic, and others. Parallel and Distributed Simulation (PADS) aims at improving the efficiency of DES by partitioning the simulation model across multiple processing elements, in order to enabling larger and/or more detailed studies to be carried out. The interest on PADS is increasing since the widespread availability of multicore processors and affordable high performance computing clusters. However, designing parallel simulation models requires considerable expertise, the result being that PADS techniques are not as widespread as they could be. In this paper we describe ErlangTW, a parallel simulation middleware based on the Time Warp synchronization protocol. ErlangTW is entirely written in Erlang, a concurrent, functional programming language specifically targeted at building distributed systems. We argue that writing parallel simulation models in Erlang is considerably easier than using conventional programming languages. Moreover, ErlangTW allows simulation models to be executed either on single-core, multicore and distributed computing architectures. We describe the design and prototype implementation of ErlangTW, and report some preliminary performance results on multicore and distributed architectures using the well known PHOLD benchmark.Comment: Proceedings of ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC 2012) in conjunction with ICFP 2012. ISBN: 978-1-4503-1577-

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
    • …
    corecore