5,377 research outputs found

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Developing of Ultrasound Experimental Methods using Machine Learning Algorithms for Application of Temperature Monitoring of Nano-Bio-Composites Extrusion

    Get PDF
    In industry fiber degradation during processing of biocomposite in the extruder is a problem that requires a reliable solution to save time and money wasted on producing damaged material. In this thesis, We try to focus on a practical solution that can monitor the change in temperature that causes fiber degradation and material damage to stop it when it occurs. Ultrasound can be used to detect the temperature change inside the material during the process of material extrusion. A monitoring approach for the extruder process has been developed using ultrasound system and the techniques of machine learning algorithms. A measurement cell was built to form a dataset of ultrasound signals at different temperatures for analysis. Machine learning algorithms were applied through machine-learning algorithm’s platform to classify the dataset based on the temperature. The dataset was classified with accuracy 97% into two categories representing over and below damage temperature (190oc) ultrasound signal. This approach could be used in industry to send an alarm or a temperature control signal when material damage is detected. Biocomposite is at the core of automotive industry material research and development concentration. Melt mixing process was used to mix biocomposite material with multi-walled carbon nanotubes (MWCNTs) for the purpose of enhancing mechanical and thermal properties of biocomposite. The resulting composite nano-bio- composite was tested via different types of thermal and mechanical tests to evaluate its performance relative to biocomposite. The developed material showed enhancement in mechanical and thermal properties that considered a high potential for applications in the future

    【研究分野別】シーズ集 [英語版]

    Get PDF
    [英語版

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Needs, trends, and advances in scintillators for radiographic imaging and tomography

    Full text link
    Scintillators are important materials for radiographic imaging and tomography (RadIT), when ionizing radiations are used to reveal internal structures of materials. Since its invention by R\"ontgen, RadIT now come in many modalities such as absorption-based X-ray radiography, phase contrast X-ray imaging, coherent X-ray diffractive imaging, high-energy X- and γ\gamma-ray radiography at above 1 MeV, X-ray computed tomography (CT), proton imaging and tomography (IT), neutron IT, positron emission tomography (PET), high-energy electron radiography, muon tomography, etc. Spatial, temporal resolution, sensitivity, and radiation hardness, among others, are common metrics for RadIT performance, which are enabled by, in addition to scintillators, advances in high-luminosity accelerators and high-power lasers, photodetectors especially CMOS pixelated sensor arrays, and lately data science. Medical imaging, nondestructive testing, nuclear safety and safeguards are traditional RadIT applications. Examples of growing or emerging applications include space, additive manufacturing, machine vision, and virtual reality or `metaverse'. Scintillator metrics such as light yield and decay time are correlated to RadIT metrics. More than 160 kinds of scintillators and applications are presented during the SCINT22 conference. New trends include inorganic and organic scintillator heterostructures, liquid phase synthesis of perovskites and μ\mum-thick films, use of multiphysics models and data science to guide scintillator development, structural innovations such as photonic crystals, nanoscintillators enhanced by the Purcell effect, novel scintillator fibers, and multilayer configurations. Opportunities exist through optimization of RadIT with reduced radiation dose, data-driven measurements, photon/particle counting and tracking methods supplementing time-integrated measurements, and multimodal RadIT.Comment: 45 pages, 43 Figures, SCINT22 conference overvie

    A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery

    Get PDF
    Minimally-invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours, results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognised need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions

    Air Force Institute of Technology Research Report 2017

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)
    corecore