4,347 research outputs found

    Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System

    Full text link
    A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Ī›) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Ī›) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    Get PDF
    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.Comment: 280 page

    Using correlation matrix memories for inferencing in expert systems

    Get PDF
    Outline of The Chapterā€¦ Section 16.2 describes CMM and the Dynamic Variable Binding Problem. Section 16.3 deals with how CMM is used as part of an inferencing engine. Section 16.4 details the important performance characteristics of CMM

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    THE USE OF NEURO-FUZZY MODELS IN EXPERT SUPPORT SYSTEMS FOR FORENSIC BUILDING-TECHNICAL EXPERTISE

    Get PDF
    The paper is focused on solving the problem of assessing the impact of repair-building works on the technical condition of objects near which these works were or are being carried out. Particular attention is paid to the analysis of the problems that accompany the creation of expert systems for supporting forensic building-technical expertise. The main aim of the work: conceptual modeling of an expert system for supporting forensic building-technical expertise. Object of research: the process of execution of forensic building-technical expertise and expert research. Solved problem: automation of a system capable of functioning in conditions of fuzzy uncertainty caused by the non-uniformity of the logic of the process of performing forensic building-technical expertise and the ambiguity and inconsistency of the information provided for research. Main scientific results: a model of a knowledge-based system is proposed and the use of neuro-fuzzy networks is justified to solve the problem of supporting the decision to assess the impact of repair-building works on the technical condition of the object, which has become the subject of expertise. Field of practical use of research results: forensic activities in the framework of building-technical expertise to determine the possible causes of deterioration in the technical condition of structural elements of buildings and their individual premises. Innovative technological product: a support system for forensic building-technical expertise based on knowledge and neuro-fuzzy models. Scope of application of an innovative technological product: forensic and investigative practice in resolving issues requiring the use of special knowledge in assessing the impact of repair-building works on the technical condition of nearby facilities

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Networks of Relations for Representation, Learning, and Generalization

    Get PDF
    We propose representing knowledge as a network of relations. Each relation relates only a few continuous or discrete variables, so that any overall relationship among the many variables treated by the network winds up being distributed throughout the network. Each relation encodes which combinations of values correspond to past experience for the variables related by the relation. Variables may or may not correspond to understandable aspects of the situation being modeled by the network. A distributed calculational process can be used to access the information stored in such a network, allowing the network to function as an associative memory. This process in its simplest form is purely inhibitory, narrowing down the space of possibilities as much as possible given the data to be matched. In contrast with methods that always retrieve a best fit for all variables, this method can return values for inferred variables while leaving non-inferable variables in an unknown or partially known state. In contrast with belief propagation methods, this method can be proven to converge quickly and uniformly for any network topology, allowing networks to be as interconnected as the relationships warrant, with no independence assumptions required. The generalization properties of such a memory are aligned with the network's relational representation of how the various aspects of the modeled situation are related
    • ā€¦
    corecore