7,121 research outputs found

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph

    Full text link
    Many graph mining and analysis services have been deployed on the cloud, which can alleviate users from the burden of implementing and maintaining graph algorithms. However, putting graph analytics on the cloud can invade users' privacy. To solve this problem, we propose CryptGraph, which runs graph analytics on encrypted graph to preserve the privacy of both users' graph data and the analytic results. In CryptGraph, users encrypt their graphs before uploading them to the cloud. The cloud runs graph analysis on the encrypted graphs and obtains results which are also in encrypted form that the cloud cannot decipher. During the process of computing, the encrypted graphs are never decrypted on the cloud side. The encrypted results are sent back to users and users perform the decryption to obtain the plaintext results. In this process, users' graphs and the analytics results are both encrypted and the cloud knows neither of them. Thereby, users' privacy can be strongly protected. Meanwhile, with the help of homomorphic encryption, the results analyzed from the encrypted graphs are guaranteed to be correct. In this paper, we present how to encrypt a graph using homomorphic encryption and how to query the structure of an encrypted graph by computing polynomials. To solve the problem that certain operations are not executable on encrypted graphs, we propose hard computation outsourcing to seek help from users. Using two graph algorithms as examples, we show how to apply our methods to perform analytics on encrypted graphs. Experiments on two datasets demonstrate the correctness and feasibility of our methods
    corecore