43,110 research outputs found

    Integration of renewable energy sources in the distribution network

    Get PDF
    Tato prĂĄce uvĂĄdĂ­ obecnĂ© informace o obnovitelnĂœch zdrojĂ­ch energie, typech elektrĂĄren a jejich pracovnĂ­ch principech. PrĂĄce je zaměƙena na větrnĂ© elektrĂĄrny (principy, typy, komponenty, vĂœhody a nevĂœhody). Obsahuje takĂ© pravidla pro pƙipojovĂĄnĂ­ rozptĂœlenĂœch zdrojĆŻ energie k distribučnĂ­ soustavě. V praktickĂ© části je ƙeĆĄena pƙípadovĂĄ studie, kterĂĄ demonstruje napěƄovĂ© charakteristiky pro sĂ­Ć„ vysokĂ©ho napětĂ­ pƙed a po pƙipojenĂ­ větrnĂ© elektrĂĄrny do distribučnĂ­ sĂ­tě se dvěma rĆŻznĂœmi hodnotami ĂșčinĂ­ku.This thesis will provide general information about renewable energy sources, types of power plants and their working principles. The thesis is focused on wind power plants (principles, types, components, advantages and disadvantages). It also includes the rules for connecting dispersed energy sources to the distribution system. In practical part, a case study demonstrates voltage characteristics before and after connection of a wind power plant to a distribution network with two different values of power factor

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    Improved decision support for engine-in-the-loop experimental design optimization

    Get PDF
    Experimental optimization with hardware in the loop is a common procedure in engineering and has been the subject of intense development, particularly when it is applied to relatively complex combinatorial systems that are not completely understood, or where accurate modelling is not possible owing to the dimensions of the search space. A common source of difficulty arises because of the level of noise associated with experimental measurements, a combination of limited instrument precision, and extraneous factors. When a series of experiments is conducted to search for a combination of input parameters that results in a minimum or maximum response, under the imposition of noise, the underlying shape of the function being optimized can become very difficult to discern or even lost. A common methodology to support experimental search for optimal or suboptimal values is to use one of the many gradient descent methods. However, even sophisticated and proven methodologies, such as simulated annealing, can be significantly challenged in the presence of noise, since approximating the gradient at any point becomes highly unreliable. Often, experiments are accepted as a result of random noise which should be rejected, and vice versa. This is also true for other sampling techniques, including tabu and evolutionary algorithms. After the general introduction, this paper is divided into two main sections (sections 2 and 3), which are followed by the conclusion. Section 2 introduces a decision support methodology based upon response surfaces, which supplements experimental management based on a variable neighbourhood search and is shown to be highly effective in directing experiments in the presence of a significant signal-to-noise ratio and complex combinatorial functions. The methodology is developed on a three-dimensional surface with multiple local minima, a large basin of attraction, and a high signal-to-noise ratio. In section 2, the methodology is applied to an automotive combinatorial search in the laboratory, on a real-time engine-in-the-loop application. In this application, it is desired to find the maximum power output of an experimental single-cylinder spark ignition engine operating under a quasi-constant-volume operating regime. Under this regime, the piston is slowed at top dead centre to achieve combustion in close to constant volume conditions. As part of the further development of the engine to incorporate a linear generator to investigate free-piston operation, it is necessary to perform a series of experiments with combinatorial parameters. The objective is to identify the maximum power point in the least number of experiments in order to minimize costs. This test programme provides peak power data in order to achieve optimal electrical machine design. The decision support methodology is combined with standard optimization and search methods – namely gradient descent and simulated annealing – in order to study the reductions possible in experimental iterations. It is shown that the decision support methodology significantly reduces the number of experiments necessary to find the maximum power solution and thus offers a potentially significant cost saving to hardware-in-the-loop experi- mentation

    Solar powered Stirling cycle electrical generator

    Get PDF
    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market

    A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators

    Get PDF
    This paper presents the design, construction and tests of a traveling-wave thermoacoustic electric generator. A two-stage travelling-wave thermoacoustic engine converts thermal energy to acoustic power. Two low-impedance linear alternators (i.e., audio loudspeakers) were installed to extract and convert the engine’s acoustic power to electricity. The coupling mechanism between the thermoacoustic engine and alternators has been systematically studied numerically and experimentally, hence the optimal locations for installing the linear alternators were identified to maximize the electric power output and/or the thermal-to-electric conversion efficiency. A ball valve was used in the loop to partly correct the acoustic field that was altered by manufacturing errors. A prototype was built based on this new concept, which used pressurized helium at 1.8 MPa as the working gas and operated at a frequency of about 171 Hz. In the experiment, a maximum electric power of 204 W when the hot end temperature of the two regenerators reaches 512℃ and 452℃, respectively. A maximum thermal-to-electric efficiency of 3.43% was achieved when the hot end temperature of the two regenerators reaches 597℃ and 511℃, respectively. The research results presented in this paper demonstrate that multi-stage travelling-wave thermoacoustic electricity generator has a great potential for developing inexpensive electric generators

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Get PDF
    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk

    Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric application

    Get PDF
    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals
    • 

    corecore