350 research outputs found

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Trust Management: Multimodal Data Perspective

    Get PDF

    Adaptive trust and reputation system as a security service in group communications

    Get PDF
    Group communications has been facilitating many emerging applications which require packet delivery from one or more sender(s) to multiple receivers. Owing to the multicasting and broadcasting nature, group communications are susceptible to various kinds of attacks. Though a number of proposals have been reported to secure group communications, provisioning security in group communications remains a critical and challenging issue. This work first presents a survey on recent advances in security requirements and services in group communications in wireless and wired networks, and discusses challenges in designing secure group communications in these networks. Effective security services to secure group communications are then proposed. This dissertation also introduces the taxonomy of security services, which can be applied to secure group communications, and evaluates existing secure group communications schemes. This dissertation work analyzes a number of vulnerabilities against trust and reputation systems, and proposes a threat model to predict attack behaviors. This work also considers scenarios in which multiple attacking agents actively and collaboratively attack the whole network as well as a specific individual node. The behaviors may be related to both performance issues and security issues. Finally, this work extensively examines and substantiates the security of the proposed trust and reputation system. This work next discusses the proposed trust and reputation system for an anonymous network, referred to as the Adaptive Trust-based Anonymous Network (ATAN). The distributed and decentralized network management in ATAN does not require a central authority so that ATAN alleviates the problem of a single point of failure. In ATAN, the trust and reputation system aims to enhance anonymity by establishing a trust and reputation relationship between the source and the forwarding members. The trust and reputation relationship of any two nodes is adaptive to new information learned by these two nodes or recommended from other trust nodes. Therefore, packets are anonymously routed from the \u27trusted\u27 source to the destination through \u27trusted\u27 intermediate nodes, thereby improving anonymity of communications. In the performance analysis, the ratio of the ATAN header and data payload is around 0.1, which is relatively small. This dissertation offers analysis on security services on group communications. It illustrates that these security services are needed to incorporate with each other such that group communications can be secure. Furthermore, the adaptive trust and reputation system is proposed to integrate the concept of trust and reputation into communications. Although deploying the trust and reputation system incurs some overheads in terms of storage spaces, bandwidth and computation cycles, it shows a very promising performance that enhance users\u27 confidence in using group communications, and concludes that the trust and reputation system should be deployed as another layer of security services to protect group communications against malicious adversaries and attacks

    Adaptable Authentication Model - for Exploring the Weaker Notions of Security

    Get PDF

    Tree-formed Verification Data for Trusted Platforms

    Full text link
    The establishment of trust relationships to a computing platform relies on validation processes. Validation allows an external entity to build trust in the expected behaviour of the platform based on provided evidence of the platform's configuration. In a process like remote attestation, the 'trusted' platform submits verification data created during a start up process. These data consist of hardware-protected values of platform configuration registers, containing nested measurement values, e.g., hash values, of loaded or started components. Commonly, the register values are created in linear order by a hardware-secured operation. Fine-grained diagnosis of components, based on the linear order of verification data and associated measurement logs, is not optimal. We propose a method to use tree-formed verification data to validate a platform. Component measurement values represent leaves, and protected registers represent roots of a hash tree. We describe the basic mechanism of validating a platform using tree-formed measurement logs and root registers and show an logarithmic speed-up for the search of faults. Secure creation of a tree is possible using a limited number of hardware-protected registers and a single protected operation. In this way, the security of tree-formed verification data is maintained.Comment: 15 pages, 11 figures, v3: Reference added, v4: Revised, accepted for publication in Computers and Securit

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF

    BUILDING TRUST FOR SERVICE ASSESSMENT IN INTERNET-ENABLED COLLABORATIVE PRODUCT DESIGN & REALIZATION ENVIRONMENTS

    Get PDF
    Reducing costs, increasing speed and leveraging the intelligence of partners involved during product design processes are important benefits of Internet-enabled collaborative product design and realization environments. The options for cost-effective product design, re-design or improvement are at their peak during the early stages of the design process and designers can collaborate with suppliers, manufacturers and other relevant contributors to acquire a better understanding of associated costs and product viability. Collaboration is by no means a new paradigm. However, companies have found distrust of collaborative partners to be the most intractable obstacle to collaborative commerce and Internet-enabled business especially in intellectual property environments, which handle propriety data on a constant basis. This problem is also reinforced in collaborative environments that are distributed in nature. Thus trust is the main driver or enabler of successful collaborative efforts or transactions in Internet-enabled product design environments. Focus is on analyzing the problem of ¡®trust for services¡¯ in distributed collaborative service provider assessment and selection, concentrating on characteristics specific to electronic product design (e-Design) environments. Current tools for such collaborative partner/provider assessment are inadequate or non-existent and researching network, user, communication and service trust problems, which hinder the growth and acceptance of true collaboration in product design, can foster new frontiers in manufacturing, business and technology. Trust and its associated issues within the context of a secure Internet-enabled product design & realization platform is a multifaceted and complex problem, which demands a strategic approach crossing disciplinary boundaries. A Design Environment Trust Service (DETS) framework is proposed to incorporate trust for services in product design environments based on client specified (or default) criteria. This involves the analysis of validated network (objective) data and non-network (subjective) data and the use of Multi Criteria Decision Making (MCDM) methodology for the selection of the most efficient service provision alternative through the minimization of distance from a specified ideal point and interpreted as a Dynamic (Design) Trust Index (DTI) or rank. Hence, the service requestor is provided with a quantifiable degree of belief to mitigate information asymmetry and enable knowledgeable decision-making regarding trustworthy service provision in a distributed environment
    corecore