920 research outputs found

    Passivity-based Rieman Liouville fractional order sliding mode control of three phase inverter in a grid-connected photovoltaic system

    Get PDF
    Photovoltaic (PV) system parameters are always non-linear due to variable environmental conditions. The Maximum power point tracking (MPPT) is difficult under multiple uncertainties, disruptions and the occurrence of time-varying stochastic conditions. Therefore, Passivity based Fractional order Sliding-Mode controller (PBSMC) is proposed to examine and develop a storage function in error tracking for PV power and direct voltage in this research work. A unique sliding surface for Fractional Order Sliding Mode Control (FOSMC) framework is proposed and its stability and finite time convergence is proved by implementing Lyapunov stability method. An additional input of sliding mode control (SMC) is also added to a passive system to boost the controller performance by removing the rapid uncertainties and disturbances. Therefore, PBSMC, along with globally consistent control efficiency under varying operating conditions is implemented with enhanced system damping and substantial robustness. The novelty of the proposed technique lies in a unique sliding surface for FOSMC framework based on Riemann Liouville (R-L) fractional calculus. Results have shown that the proposed control technique reduces the tracking error in PV output power, under variable irradiance conditions, by 81%, compared to fractional order proportional integral derivative (FOPID) controller. It is reduced by 39%, when compared to passivity based control (PBC) and 28%, when compared to passivity based FOPID (EPBFOPID). The proposed technique led to the least total harmonic distortion in the grid side voltage and current. The tracking time of PV output power is 0.025 seconds in PBSMC under varying solar irradiance, however FOPID, PBC, EPBFOPID, have failed to converge fully. Similarly the dc link voltage has tracked the reference voltage in 0.05 seconds however the rest of the methods either could not converge, or converged after significant amount of time. During solar irradiance and temperature change, the photovoltaic output power has converged in 0.018 seconds using PBSMC, however remaining methods failed to converge or track fully and the dc link voltage has minimum tracking error due to PBSMC as compared to the other methods. Furthermore, the photovoltaic output power converges to the reference power in 0.1 seconds in power grid voltage drop, whereas other methods failed to converge fully. In addition power is also injected from the PV inverter into the grid at unity power factor

    Estimation of airship states and model uncertainties using nonlinear estimators

    Get PDF
    This Airships are lighter than air vehicles and due to their growing number of applications, they are becoming attractive for the research community. Most of the applications require an airship autonomous flight controller which needs an accurate model and state information. Usually, airship states are affected by noise and states information can be lost in the case of sensor's faults, while airship model is affected by model inaccuracies and model uncertainties. This paper presents the application of nonlinear and Bayesian estimators for estimating the states and model uncertainties of neutrally buoyant airship. It is considered that minimum sensor measurements are available, and data is corrupted with process and measurement noise. A novel lumped model uncertainty estimation approach is formulated where airship model is augmented with six extra state variables capturing the model uncertainty of the airship. The designed estimator estimates the airship model uncertainty along with its states. Nonlinear estimators, Extended Kalman Filter and Unscented Kalman Filter are designed for estimating airship attitude, linear velocities, angular velocities and model uncertainties. While Particle filter is designed for the estimation of airship attitude, linear velocities and angular velocities. Simulations have been performed using nonlinear 6-DOF simulation model of experimental airship for assessing the estimator performances. 1− uncertainty bound and error analysis have been performed for the validation. A comparative study of the estimator's performances is also carried out

    On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms

    Get PDF
    This paper is devoted to the study of the well-posedness of a singular nonlinear fractional pseudo-hyperbolic system with frictional damping terms. The fractional derivative is described in Caputo sense. The equations are supplemented by classical and nonlocal boundary conditions. Upon some a priori estimates and density arguments, we establish the existence and uniqueness of the strongly generalized solution for the associated linear fractional system in some Sobolev fractional spaces. On the basis of the obtained results for the linear fractional system, we apply an iterative process in order to establish the well-posedness of the nonlinear fractional system. This mathematical model of pseudo-hyperbolic systems arises mainly in the theory of longitudinal and lateral vibrations of elastic bars (beams), and in some special case it is propounded in unsteady helical flows between two infinite coaxial circular cylinders for some specific boundary conditions

    Decentralised State Feedback Tracking Control for Large-Scale Interconnected Systems Using Sliding Mode Techniques

    Get PDF
    A class of large-scale interconnected systems with matched and unmatched uncertainties is studied in this thesis, with the objective of proposing a controller based on diffeomorphisms and some techniques to deal with the tracking problem of the system. The main research developed in this thesis includes: 1. Large-scale interconnected system is a complex system consisting of several semi-independent subsystems, which are typically located in distinct geographic or logical locations. In this situation, decentralised control which only collects the local information is the practical method to deal with large-scale interconnected systems. The decentralised methodology is utilised throughout this thesis, guaranteeing that systems exhibit essential robustness against uncertainty. 2. Sliding mode technique is involved in the process of controller design. By introducing a nonsingular local diffeomorphism, the large-scale system can be transformed into a system with a specific regular form, where the matched uncertainty is completely absent from the subspace spanned by the sliding mode dynamics. The sliding mode based controller is proposed in this thesis to successfully achieve high robustness of the closed-loop interconnected systems with some particular uncertainties. 3. The considered large-scale interconnected systems can always track the smooth desired signals in a finite time. Each subsystem can track its own ideal signal or all subsystems can track the same ideal signal. Both situations are discussed in this thesis and the results are mathematically proven by introducing the Lyapunov theory, even when operating under the presence of disturbances. At the end of each chapter, some simulation examples, like a coupled inverted pendulums system, a river pollution system and a high-speed train system, are presented to verify the correctness of the proposed theory. At the conclusion of this thesis, a brief summary of the research findings has been provided, along with a mention of potential future research directions in tracking control of large-scale systems, like more general boundedness of interconnections, possibilities of distributed control, collaboration with intelligent control and so on. Some mathematical theories involved and simulation code are included in the appendix section

    A novel adaptive PD-type iterative learning control of the PMSM servo system with the friction uncertainty in low speeds

    Get PDF
    High precision demands in a large number of emerging robotic applications strengthened the role of the modern control laws in the position control of the Permanent Magnet Synchronous Motor (PMSM) servo system. This paper proposes a learning-based adaptive control approach to improve the PMSM position tracking in the presence of the friction uncertainty. In contrast to most of the reported works considering the servos operating at high speeds, this paper focuses on low speeds in which the friction stemmed deteriorations become more obvious. In this paper firstly, a servo model involving the Stribeck friction dynamics is formulated, and the unknown friction parameters are identified by a genetic algorithm from the offline data. Then, a feedforward controller is designed to inject the friction information into the loop and eliminate it before causing performance degradations. Since the friction is a kind of disturbance and leads to uncertainties having time-varying characters, an Adaptive Proportional Derivative (APD) type Iterative Learning Controller (ILC) named as the APD-ILC is designed to mitigate the friction effects. Finally, the proposed control approach is simulated in MATLAB/Simulink environment and it is compared with the conventional Proportional Integral Derivative (PID) controller, Proportional ILC (P-ILC), and Proportional Derivative ILC (PD-ILC) algorithms. The results confirm that the proposed APD-ILC significantly lessens the effects of the friction and thus noticeably improves the control performance in the low speeds of the PMSM

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Backstepping Controller for Mobile Robot in Presence of Disturbances and Uncertainties

    Get PDF
    The objective of this work is to devise an effective control system for addressing the trajectory tracking challenge in nonholonomic mobile robots. Two primary control approaches, namely kinematic and dynamic strategies, are explored to achieve this goal. In the kinematic control domain, a backstepping controller (BSC) is introduced as the core element of the control system. The BSC is utilized to guide the mobile robot along the desired trajectory, leveraging the robot’s kinematic model. To address the limitations of the kinematic control approach, a dynamic control strategy is proposed, incorporating the dynamic parameters of the robot. This dynamic control ensures real-time control of the mobile robot. To ensure the stability of the control system, the Lyapunov stability theory is employed, providing a rigorous framework for analyzing and proving stability. Additionally, to optimize the performance of the control system, a genetic algorithm is employed to design an optimal control law. The effectiveness of the developed control approach is demonstrated through simulation results. These results showcase the enhanced performance and efficiency achieved by the proposed control strategies. Overall, this study presents a comprehensive and robust approach for trajectory tracking in nonholonomic mobile robots, combining kinematic and dynamic control strategies while ensuring stability and performance optimization

    Model learning for trajectory tracking of robot manipulators

    Get PDF
    Abstract Model based controllers have drastically improved robot performance, increasing task accuracy while reducing control effort. Nevertheless, all this was realized with a very strong assumption: the exact knowledge of the physical properties of both the robot and the environment that surrounds it. This assertion is often misleading: in fact modern robots are modeled in a very approximate way and, more important, the environment is almost never static and completely known. Also for systems very simple, such as robot manipulators, these assumptions are still too strong and must be relaxed. Many methods were developed which, exploiting previous experiences, are able to refine the nominal model: from classic identification techniques to more modern machine learning based approaches. Indeed, the topic of this thesis is the investigation of these data driven techniques in the context of robot control for trajectory tracking. In the first two chapters, preliminary knowledge is provided on both model based controllers, used in robotics to assure precise trajectory tracking, and model learning techniques. In the following three chapters, are presented the novelties introduced by the author in this context with respect to the state of the art: three works with the same premise (an inaccurate system modeling), an identical goal (accurate trajectory tracking control) but with small differences according to the specific platform of application (fully actuated, underactuated, redundant robots). In all the considered architectures, an online learning scheme has been introduced to correct the nominal feedback linearization control law. Indeed, the method has been primarily introduced in the literature to cope with fully actuated systems, showing its efficacy in the accurate tracking of joint space trajectories also with an inaccurate dynamic model. The main novelty of the technique was the use of only kinematics information, instead of torque measurements (in general very noisy), to online retrieve and compensate the dynamic mismatches. After that the method has been extended to underactuated robots. This new architecture was composed by an online learning correction of the controller, acting on the actuated part of the system (the nominal partial feedback linearization), and an offline planning phase, required to realize a dynamically feasible trajectory also for the zero dynamics of the system. The scheme was iterative: after each trial, according to the collected information, both the phases were improved and then repeated until the task achievement. Also in this case the method showed its capability, both in numerical simulations and on real experiments on a robotics platform. Eventually the method has been applied to redundant systems: differently from before, in this context the task consisted in the accurate tracking of a Cartesian end effector trajectory. In principle very similar to the fully actuated case, the presence of redundancy slowed down drastically the learning machinery convergence, worsening the performance. In order to cope with this, a redundancy resolution was proposed that, exploiting an approximation of the learning algorithm (Gaussian process regression), allowed to locally maximize the information and so select the most convenient self motion for the system; moreover, all of this was realized with just the resolution of a quadratic programming problem. Also in this case the method showed its performance, realizing an accurate online tracking while reducing both the control effort and the joints velocity, obtaining so a natural behaviour. The thesis concludes with summary considerations on the proposed approach and with possible future directions of research

    Runway Safety Improvements Through a Data Driven Approach for Risk Flight Prediction and Simulation

    Get PDF
    Runway overrun is one of the most frequently occurring flight accident types threatening the safety of aviation. Sensors have been improved with recent technological advancements and allow data collection during flights. The recorded data helps to better identify the characteristics of runway overruns. The improved technological capabilities and the growing air traffic led to increased momentum for reducing flight risk using artificial intelligence. Discussions on incorporating artificial intelligence to enhance flight safety are timely and critical. Using artificial intelligence, we may be able to develop the tools we need to better identify runway overrun risk and increase awareness of runway overruns. This work seeks to increase attitude, skill, and knowledge (ASK) of runway overrun risks by predicting the flight states near touchdown and simulating the flight exposed to runway overrun precursors. To achieve this, the methodology develops a prediction model and a simulation model. During the flight training process, the prediction model is used in flight to identify potential risks and the simulation model is used post-flight to review the flight behavior. The prediction model identifies potential risks by predicting flight parameters that best characterize the landing performance during the final approach phase. The predicted flight parameters are used to alert the pilots for any runway overrun precursors that may pose a threat. The predictions and alerts are made when thresholds of various flight parameters are exceeded. The flight simulation model simulates the final approach trajectory with an emphasis on capturing the effect wind has on the aircraft. The focus is on the wind since the wind is a relatively significant factor during the final approach; typically, the aircraft is stabilized during the final approach. The flight simulation is used to quickly assess the differences between fight patterns that have triggered overrun precursors and normal flights with no abnormalities. The differences are crucial in learning how to mitigate adverse flight conditions. Both of the models are created with neural network models. The main challenges of developing a neural network model are the unique assignment of each model design space and the size of a model design space. A model design space is unique to each problem and cannot accommodate multiple problems. A model design space can also be significantly large depending on the depth of the model. Therefore, a hyperparameter optimization algorithm is investigated and used to design the data and model structures to best characterize the aircraft behavior during the final approach. A series of experiments are performed to observe how the model accuracy change with different data pre-processing methods for the prediction model and different neural network models for the simulation model. The data pre-processing methods include indexing the data by different frequencies, by different window sizes, and data clustering. The neural network models include simple Recurrent Neural Networks, Gated Recurrent Units, Long Short Term Memory, and Neural Network Autoregressive with Exogenous Input. Another series of experiments are performed to evaluate the robustness of these models to adverse wind and flare. This is because different wind conditions and flares represent controls that the models need to map to the predicted flight states. The most robust models are then used to identify significant features for the prediction model and the feasible control space for the simulation model. The outcomes of the most robust models are also mapped to the required landing distance metric so that the results of the prediction and simulation are easily read. Then, the methodology is demonstrated with a sample flight exposed to an overrun precursor, and high approach speed, to show how the models can potentially increase attitude, skill, and knowledge of runway overrun risk. The main contribution of this work is on evaluating the accuracy and robustness of prediction and simulation models trained using Flight Operational Quality Assurance (FOQA) data. Unlike many studies that focused on optimizing the model structures to create the two models, this work optimized both data and model structures to ensure that the data well capture the dynamics of the aircraft it represents. To achieve this, this work introduced a hybrid genetic algorithm that combines the benefits of conventional and quantum-inspired genetic algorithms to quickly converge to an optimal configuration while exploring the design space. With the optimized model, this work identified the data features, from the final approach, with a higher contribution to predicting airspeed, vertical speed, and pitch angle near touchdown. The top contributing features are altitude, angle of attack, core rpm, and air speeds. For both the prediction and the simulation models, this study goes through the impact of various data preprocessing methods on the accuracy of the two models. The results may help future studies identify the right data preprocessing methods for their work. Another contribution from this work is on evaluating how flight control and wind affect both the prediction and the simulation models. This is achieved by mapping the model accuracy at various levels of control surface deflection, wind speeds, and wind direction change. The results saw fairly consistent prediction and simulation accuracy at different levels of control surface deflection and wind conditions. This showed that the neural network-based models are effective in creating robust prediction and simulation models of aircraft during the final approach. The results also showed that data frequency has a significant impact on the prediction and simulation accuracy so it is important to have sufficient data to train the models in the condition that the models will be used. The final contribution of this work is on demonstrating how the prediction and the simulation models can be used to increase awareness of runway overrun.Ph.D
    • …
    corecore