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Abstract – This brief manuscript discusses the necessity to linearize nonlinear systems. Thorough 
review on nonlinear phenomena in dynamical and numerical system is presented. The methodology 
to linearize nonlinear system in Jacobian approach is shown in didactic manner. Numerical and 
dynamical example of nonlinear system is provided to enhance understanding. Afterward, the 
comparison between both linearized and non-linearized system is literally discussed. The outcomes 
concluded that linearization process is a linear approximation of a nonlinear system that is only 
valid in a small region around an operating point. 
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I. Introduction 

Many physical systems are nonlinear in nature. 
Engineers involve in multifarious technologies ranging 
from renewable energy [1]–[2], electro-mechanical 
systems [3], manufacturing industries [4]–[5], robotics 
[6]–[7], aerospace [8], maritime [9] and automotive 
sectors [10] are dealing with nonlinear phenomena. In µ-
nano systems, nonlinearity comes from hysteresis 
phenomena, friction, as well as discontinuous behavior 
[11]. Robotic systems hold nonlinearity due to Sine or 
Cosine functions. Whereas, study in wind turbine 
technology shows that the power coefficient characteristic 
of typical wind turbine system behaves as a nonlinear 
function [12]–[13]. Likewise, backlash appears in 
rotational geared mechanical system introduces 
nonlinearity phenomena [14]. If the backlash is accounted 
in the system dynamics, the system model behaves as 
nonlinear function which is difficult to control. Practically, 
the backlash is known to be insignificant to the system 
dynamics and therefore being neglected by the control 
designer. 

Nonlinear systems do not fulfilll superposition 
principle as linear systems do. Nonlinear systems absorb 
nonlinear phenomena such as chaos, limit cycle, 
saturation, finite escape time. Nonlinear systems have 

multiple isolated equilibrium points, or sometimes infinite 
and even not exist. If the nonlinearity is too large and 
significant to the system dynamics, the performance of the 
system may be deteriorated when the system is controlled 
by linear controller derived through linearized model [15]. 
The controllability and observability of nonlinear system 
is also hard to prove. The stability can be proved by using 
high level mathematical manipulation such as Lyapunov 
[16]–[18] or Popov [19]–[20] through Nyquist. However, 
frequency analysis for nonlinear system is almost 
impossible in order to facilitate Nyquist criteria. Thus, 
solving nonlinear systems requires advance control 
techniques. The presence of exogenous disturbances and 
uncertainties in the nonlinear systems dynamic is 
sometimes inevitable, and give catastrophic effect to the 
stability and robustness of closed loop systems. 

Nonlinear phenomena sometimes necessary as adopted 
by oscillator and cyclic systems. Some strange behaviors 
of nonlinear systems can be observed in Van der Pol 
oscillator [21]–[22]. The oscillator is modeled as two-
dimensional second order system 

  
�̇�𝑥1 = �̇�𝑥2 (1) 

  
�̇�𝑥2 = −𝑥𝑥1𝜀𝜀ℎ(𝑥𝑥1)𝑥𝑥2 (2) 

where 
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ℎ(𝑥𝑥1) = −1 + 𝑥𝑥1

2 (3) 
  

gives nonlinearity to the system. Limit cycle effect in Van 
der Pol oscillator can be observed by tuning the non-
negative parameter 𝜀𝜀, as shown by the phase portrait in 
Fig. 1. Note that both 𝑥𝑥1 and 𝑥𝑥2 are system states. 
 

 
Fig. 1. Historical trajectory of 𝑥𝑥1 and 𝑥𝑥2 

 
Previous literatures demonstrate methods to deal with 

nonlinear systems. For example, author in [18] deals with 
numerical second order nonlinear system with 
uncertainties and exogenous disturbances. The numerical 
nonlinear system of the form 

  
�̇�𝑥1 = 𝑥𝑥2 + 𝑥𝑥1

2 sin 0.01𝑡𝑡 (4) 
  

�̇�𝑥2 = 𝑥𝑥1
3𝑒𝑒𝑥𝑥2𝑢𝑢 + 𝑒𝑒𝑥𝑥2 cos(𝑥𝑥1𝑥𝑥2) (5) 

  
is stabilized by using advanced backstepping with 
nonlinear damping function. Another strange behavior of 
nonlinear effect can be observed in the tunnel diode [23], 
where the study discusses about bifurcation phenomena in 
tunnel diode circuit. 

In linear systems, input/output frequency domain 
methods are known to be effective. However, in nonlinear 
systems, poles and zeros, frequency domain, phase and 
gain margin are not defined. Thus, solving nonlinear 
systems requires advanced control techniques. Linear 
systems can be stabilized by linear controllers such as pole 
placement approach [24]–[26], linear quadratic regulator 
(LQR) [27]–[29], linear quadratic Gaussian (LQG) [30], 
model reference adaptive control (MRAC) [7], 
proportional-integral-derivative (PID) technique [31]–
[33] and many more. MRAC requires reference LTIV 
model. The error dynamic between actual model and 
reference model is processed by the adaptation law that 
can be designed by using gradient method, hyperstability 
or Lyapunov. Design steps for optimal control using LQR 
can be possible if the system matrix is linear because 
separation principle is valid. 

II. Linearization 
In some cases, linearization of nonlinear systems is 

normally obtainable by using the Jacobian matrix at 
equilibrium points [34]–[36]. Then, by using the 
linearized system, a simple linear controller can be applied 
to achieve stabilization. In some systems, linearization 
gives freedom to designer. For instance, designing 
feedback gain 𝐾𝐾 for state feedback system 𝑢𝑢(𝑡𝑡) =
 −𝐾𝐾𝑥𝑥(𝑡𝑡) can be done by various techniques such as linear 
matrix inequality (LMI) and artificial computing. 

Linearization via Jacobian can be the easiest technique 
available to linearize nonlinear function. For instance, let 
an autonomous system of the form 

  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (6) 

  
𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡 = 𝑔𝑔(𝑥𝑥, 𝑦𝑦) (7) 

  
where 𝑓𝑓(⋅) and 𝑔𝑔(⋅) are continuously 𝑛𝑛-times 
differentiable 𝐶𝐶𝑛𝑛. Assume (𝑥𝑥0, 𝑦𝑦0) be the equilibrium 
point for the system in equation (6) and equation (7), 
Theorem 1 confirms the exponentially stable origin for 
(𝑥𝑥0, 𝑦𝑦0). 
 
Theorem 1 
Let 𝑥𝑥 = 0 be an equilibrium point for the nonlinear system 

  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 ≜ �̇�𝑥 = 𝑓𝑓(𝑡𝑡, 𝑥𝑥) (8) 

  
where 𝑡𝑡 represents time and 𝑓𝑓: [0, ∞) × 𝒟𝒟 ⟶ ℛ𝑛𝑛 is 
continuously differentiable, 𝒟𝒟 = {𝑥𝑥 ∈ ℛ𝑛𝑛|‖𝑥𝑥‖2 < 𝑟𝑟}, and 
the Jacobian matrix 𝒥𝒥 ≜ [𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥] is bounded and Lipschitz on 
𝒟𝒟, uniformly in 𝑡𝑡. Let 

  

𝐴𝐴(𝑡𝑡) = 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥 (𝑡𝑡, 𝑥𝑥)|

𝑥𝑥=0
 (9) 

  
then the origin is an exponentially stable equilibrium point 
for the nonlinear system if it is an exponentially stable 
equilibrium point for the linear system 

  
�̇�𝑥 = 𝐴𝐴(𝑡𝑡)𝑥𝑥 (10) 

  
⋯ 𝐸𝐸𝑛𝑛𝑑𝑑 𝑜𝑜𝑓𝑓 𝑇𝑇ℎ𝑒𝑒𝑜𝑜𝑟𝑟𝑒𝑒𝑒𝑒 1 ⋯ 

 
With Theorem 1, the Jacobian at (𝑥𝑥0, 𝑦𝑦0)  can be computed 
as 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡  = 𝑓𝑓(𝑥𝑥, 𝑦𝑦)  

    
 ≈ 𝑓𝑓(𝑥𝑥0, 𝑦𝑦0) + 𝜕𝜕𝑓𝑓

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑦𝑦0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜) 
(11)   + 𝜕𝜕𝑓𝑓

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑦𝑦0)(𝑦𝑦 − 𝑦𝑦𝑜𝑜) 
and 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  = 𝑔𝑔(𝑥𝑥, 𝑑𝑑)  

    
 ≈ 𝑔𝑔(𝑥𝑥0, 𝑑𝑑0) + 𝜕𝜕𝑔𝑔

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜) 
(12)   +𝜕𝜕𝑔𝑔

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑑𝑑 − 𝑑𝑑𝑜𝑜) 
 
since (𝑥𝑥0, 𝑑𝑑0) is the equilibrium point, 𝑓𝑓(𝑥𝑥0, 𝑑𝑑0) ⇒ 0 and, 
𝑔𝑔(𝑥𝑥0, 𝑑𝑑0) ⇒ 0. As such, the equilibrium points (𝑥𝑥0, 𝑑𝑑0) 
implies 
  

𝑓𝑓(𝑥𝑥0, 𝑑𝑑0) = 𝑔𝑔(𝑥𝑥0, 𝑑𝑑0) = 0 (13) 
  

Therefore, the linearized system (6)-(7) can be concluded 
as in equation (14) and equation (15). 

  
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝜕𝜕𝑓𝑓

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜) + 𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑 (𝑥𝑥0, 𝑑𝑑0)(𝑑𝑑 − 𝑑𝑑𝑜𝑜) 

(14) 

  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜕𝜕𝑔𝑔

𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜) + 𝜕𝜕𝑔𝑔
𝜕𝜕𝑑𝑑 (𝑥𝑥0, 𝑑𝑑0)(𝑑𝑑 − 𝑑𝑑𝑜𝑜) 

(15) 

  
Jacobian matrix 𝒥𝒥 of system (6)-(7) at (𝑥𝑥0, 𝑑𝑑0) can 

be written as 
  

𝒥𝒥 =

[
 
 
 
 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜)

𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑 (𝑥𝑥0, 𝑑𝑑0)(𝑑𝑑 − 𝑑𝑑𝑜𝑜)

𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥 (𝑥𝑥0, 𝑑𝑑0)(𝑥𝑥 − 𝑥𝑥𝑜𝑜)

𝜕𝜕𝑔𝑔
𝜕𝜕𝑑𝑑 (𝑥𝑥0, 𝑑𝑑0)(𝑑𝑑 − 𝑑𝑑𝑜𝑜)]

 
 
 
 
 (16) 

 

III. Numerical Illustration 
This section illustrates two cases nonlinear systems. 

First, dynamical physical system will be linearized in 
Jacobian. Secondly, the Jacobian will be exploited to 
linearize the numerical nonlinear function. 

A. Nonlinear Pendulum 

To demonstrate the approach in equation (11) - (16), 
consider the dynamics of pendulum system in 

  
�̈�𝜃 = −𝑎𝑎 sin 𝜃𝜃 − 𝑏𝑏�̇�𝜃 + 𝑐𝑐𝑐𝑐 (17) 

  
The input to the system is the torque applied to the 
pendulum. In steady state, the dynamics in equation (17) 
appears as 

  
−𝑎𝑎 sin 𝜃𝜃 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 = 0 (18) 

  
Then, stabilizing the pendulum at 𝜃𝜃 = 𝛿𝛿 defines two state 
variables 𝑥𝑥1 = 𝜃𝜃 − 𝛿𝛿 and 𝑥𝑥2 = �̇�𝜃𝑛𝑛. As such, �̇�𝑥1 = 𝑥𝑥2 and 
, �̇�𝑥2 = −𝑎𝑎[sin(𝑥𝑥1 + 𝛿𝛿) − sin 𝛿𝛿] − 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑐𝑐, where 𝑐𝑐 
represents the input (torque) to the pendulum. Hence, 
linearize the system at origin renders 𝜕𝜕𝑥𝑥1

𝜕𝜕𝑥𝑥1
|
(0,0)

= 0, 

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑥𝑥2

|
(0,0)

= 1, 𝜕𝜕𝑥𝑥2
𝜕𝜕𝑥𝑥1

|
(0,0)

= −𝑎𝑎 cos 𝛿𝛿, and 𝜕𝜕𝑥𝑥2
𝜕𝜕𝑥𝑥2

|
(0,0)

= −𝑏𝑏. 

Therefore, the linearized pendulum system at origin (0,0) 
can be written as 
  

[�̇�𝑥1
�̇�𝑥2

] = [ 0 1
−𝑎𝑎 cos 𝛿𝛿 −𝑏𝑏] [𝑥𝑥1

𝑥𝑥2
] + [0𝑐𝑐] 𝑐𝑐 (19) 

  
where 𝐴𝐴 = [ 0 1

−𝑎𝑎 cos 𝛿𝛿 −𝑏𝑏] is the system matrix and 𝐵𝐵 =
[0 𝑐𝑐]𝑇𝑇 is the input matrix. The pair (𝐴𝐴, 𝐵𝐵) is controllable. 
Taking 𝐾𝐾 = [𝐾𝐾1 𝐾𝐾2] such that 𝐴𝐴 − 𝐵𝐵𝐾𝐾 is Hurwitz will 
guarantee the stability of the pendulum system. Parameter 
𝐾𝐾 can be formulated via state-feedback control techniques 
that is not within the scope of this studies. 
   

B. Numerical Nonlinear System 

Consider nonlinear system 
    

�̇�𝑥 = 𝑑𝑑 (20) 
    

�̇�𝑑 = (1 − 𝑥𝑥2)𝑑𝑑 + 𝑥𝑥 (21) 
    

The system is autonomous as no stimulus is exerted to the 
system. The nonlinearity comes from 𝑥𝑥2𝑑𝑑-term that 
appear in the 2nd-subsystem. The equilibrium point of 
equation (20) and equation (21) is (𝑥𝑥, 𝑑𝑑) = (0,0). 
Therefore, the Jacobian matrix is formulated as 

  

𝒥𝒥 =

[
 
 
 
 𝜕𝜕

𝜕𝜕𝑥𝑥 (𝑑𝑑) 𝜕𝜕
𝜕𝜕𝑑𝑑 (𝑑𝑑)

𝜕𝜕
𝜕𝜕𝑥𝑥 ((1 − 𝑥𝑥2)𝑑𝑑 + 𝑥𝑥) 𝜕𝜕

𝜕𝜕𝑑𝑑 ((1 − 𝑥𝑥2)𝑑𝑑 + 𝑥𝑥)]
 
 
 
 
 (22) 

  
and yields 
  

𝒥𝒥 = [ 0 1
−2𝑥𝑥𝑑𝑑 + 1 1 − 𝑥𝑥2] (23) 

  
Then, the Jacobian matrix at equilibrium can be computed 
as 
  

𝒥𝒥 = [0 1
1 1] (24) 

  
in order to get the linearized system at (0,0) as 
  

[�̇�𝑥1
�̇�𝑥2

] = [0 1
1 1] [𝑥𝑥1

𝑥𝑥2
] (25) 

  
In equation (25), both 𝑥𝑥1 and 𝑥𝑥2 are defined as system 
states. As a result, and for simplicity, one would obtain 
    

�̇�𝑥 = 𝑑𝑑 (26) 
    

�̇�𝑑 = 𝑑𝑑 + 𝑥𝑥 (27) 
    



ISSN: 2600 - 7495         eISSN: 2600-9633         IJEEAS,   Vol. 2,   No. 2,   October 2019

International Journal of Electrical Engineering and Applied Sciences

20

 
International Journal of Electrical Engineering and Applied Sciences 
 

ISSN: 2600-7495          eISSN: 2600-9633          IJEEAS Vol. 2, No. 2, October 2019 

If both linearized system (equation (26) – equation (27)) 
and actual system (equation (20) – equation (21)) are 
injected by step 𝑢𝑢(𝑡𝑡), the trajectory can be recorded as in 
Fig. 2. 
 

 
Fig. 2. Trajectory of nonlinear system and linearized system 

 

IV. Discussion 
Linearization relaxes the need of using nonlinear 

control techniques to stabilize nonlinear systems. 
However, control law that is designed by using linearized 
model would not be robust within the wide range of 
operation. This phenomenon can be realized in Fig. 2 
where the trajectory of the linearized system departs away 
from the trajectory of the actual system when time 
approaching ∞. After 4.5 seconds, the result shown in Fig. 
2 bears no trajectory resemblance between actual 
nonlinear system in equations (20)-(21) and its linearized 
version in equations (26)-(27). The contradiction between 
the actual nonlinear system and its linearized version in 
Fig. 2 would devise a cunning test to control engineers. As 
such, the controller that is designed based on linearized 
model will not be able to guarantee the stabilization 
beyond wide range of nonlinear sector when applied to 
nonlinear system. 

V. Conclusion 
Linearize or not to linearize a nonlinear function (or 

system) is highly depending on the objectives of the 
solution to a nonlinear system under studies. Researchers 
studying the chaotic or bifurcation phenomena possibly 
will not to linearize the system at hand because relaxing 
nonlinear phenomena will diminish the sources of 
bifurcation and chaotic in the system. In some control 
engineering fields, linearization is a must if the 
nonlinearity become insignificant and does not offer 
catastrophic effect to the system under studies. In this 
case, linearization is utilize only to ease the steps for 
controller design. 
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