8 research outputs found

    A Transformer-Based Network for Dynamic Hand Gesture Recognition

    Get PDF
    Transformer-based neural networks represent a successful self-attention mechanism that achieves state-of-the-art results in language understanding and sequence modeling. However, their application to visual data and, in particular, to the dynamic hand gesture recognition task has not yet been deeply investigated. In this paper, we propose a transformer-based architecture for the dynamic hand gesture recognition task. We show that the employment of a single active depth sensor, specifically the usage of depth maps and the surface normals estimated from them, achieves state-of-the-art results, overcoming all the methods available in the literature on two automotive datasets, namely NVidia Dynamic Hand Gesture and Briareo. Moreover, we test the method with other data types available with common RGB-D devices, such as infrared and color data. We also assess the performance in terms of inference time and number of parameters, showing that the proposed framework is suitable for an online in-car infotainment system

    3D Convolutional Networks for Action Recognition: Application to Sport Gesture Recognition

    Full text link
    3D convolutional networks is a good means to perform tasks such as video segmentation into coherent spatio-temporal chunks and classification of them with regard to a target taxonomy. In the chapter we are interested in the classification of continuous video takes with repeatable actions, such as strokes of table tennis. Filmed in a free marker less ecological environment, these videos represent a challenge from both segmentation and classification point of view. The 3D convnets are an efficient tool for solving these problems with window-based approaches.Comment: Multi-faceted Deep Learning, 202

    Deep Recurrent Networks for Gesture Recognition and Synthesis

    Get PDF
    It is hard to overstate the importance of gesture-based interfaces in many applications nowadays. The adoption of such interfaces stems from the opportunities they create for incorporating natural and fluid user interactions. This highlights the importance of having gesture recognizers that are not only accurate but also easy to adopt. The ever-growing popularity of machine learning has prompted many application developers to integrate automatic methods of recognition into their products. On the one hand, deep learning often tops the list of the most powerful and robust recognizers. These methods have been consistently shown to outperform all other machine learning methods in a variety of tasks. On the other hand, deep networks can be overwhelming to use for a majority of developers, requiring a lot of tuning and tweaking to work as expected. Additionally, these networks are infamous for their requirement for large amounts of training data, further hampering their adoption in scenarios where labeled data is limited. In this dissertation, we aim to bridge the gap between the power of deep learning methods and their adoption into gesture recognition workflows. To this end, we introduce two deep network models for recognition. These models are similar in spirit, but target different application domains: one is designed for segmented gesture recognition, while the other is suitable for continuous data, tackling segmentation and recognition problems simultaneously. The distinguishing characteristic of these networks is their simplicity, small number of free parameters, and their use of common building blocks that come standard with any modern deep learning framework, making them easy to implement, train and adopt. Through evaluations, we show that our proposed models achieve state-of-the-art results in various recognition tasks and application domains spanning different input devices and interaction modalities. We demonstrate that the infamy of deep networks due to their demand for powerful hardware as well as large amounts of data is an unfair assessment. On the contrary, we show that in the absence of such data, our proposed models can be quickly trained while achieving competitive recognition accuracy. Next, we explore the problem of synthetic gesture generation: a measure often taken to address the shortage of labeled data. We extend our proposed recognition models and demonstrate that the same models can be used in a Generative Adversarial Network (GAN) architecture for synthetic gesture generation. Specifically, we show that our original recognizer can be used as the discriminator in such frameworks, while its slightly modified version can act as the gesture generator. We then formulate a novel loss function for our gesture generator, which entirely replaces the need for a discriminator network in our generative model, thereby significantly reducing the complexity of our framework. Through evaluations, we show that our model is able to improve the recognition accuracy of multiple recognizers across a variety of datasets. Through user studies, we additionally show that human evaluators mistake our synthetic samples with the real ones frequently indicating that our synthetic samples are visually realistic. Additional resources for this dissertation (such as demo videos and public source codes) are available at https://www.maghoumi.com/dissertatio

    Production and storage stability of skin carbonated CaO

    No full text
    Hand gesture recognition is a strenuous task to solve in videos. In this paper, we use a 3D residual attention network which is trained end to end for hand gesture recognition. Based on the stacked multiple attention blocks, we build a 3D network which generates different features at each attention block. Our 3D attention based residual network (Res3ATN) can be built and extended to very deep layers. Using this network, an extensive analysis is performed on other 3D networks based on three publicly available datasets. The Res3ATN network performance is compared to C3D, ResNet-10, and ResNext-101 networks. We also study and evaluate our baseline network with different number of attention blocks. The comparison shows that the 3D residual attention network with 3 attention blocks is robust in attention learning and is able to classify the gestures with better accuracy, thus outperforming existing networks.Comment: 10 pages, 4 figures, International Conference on 3D Vision (3DV 2019), Quebec City, Canada, September 16-19, 201

    Enhanced processing methods for light field imaging

    Full text link
    The light field camera provides rich textural and geometric information, but it is still challenging to use it efficiently and accurately to solve computer vision problems. Light field image processing is divided into multiple levels. First, low-level processing technology mainly includes the acquisition of light field images and their preprocessing. Second, the middle-level process consists of the depth estimation, light field encoding, and the extraction of cues from the light field. Third, high-level processing involves 3D reconstruction, target recognition, visual odometry, image reconstruction, and other advanced applications. We propose a series of improved algorithms for each of these levels. The light field signal contains rich angular information. By contrast, traditional computer vision methods, as used for 2D images, often cannot make full use of the high-frequency part of the light field angular information. We propose a fast pre-estimation algorithm to enhance the light field feature to improve its speed and accuracy when keeping full use of the angular information.Light field filtering and refocusing are essential cues in light field signal processing. Modern frequency domain filtering technology and wavelet technology have effectively improved light field filtering accuracy but may fail at object edges. We adapted the sub-window filtering with the light field to improve the reconstruction of object edges. Light field images can analyze the effects of scattering and refraction phenomena, and there are still insufficient metrics to evaluate the results. Therefore, we propose a physical rendering-based light field dataset that simulates the distorted light field image through a transparent medium, such as atmospheric turbulence or water surface. The neural network is an essential method to process complex light field data. We propose an efficient 3D convolutional autoencoder network for the light field structure. This network overcomes the severe distortion caused by high-intensity turbulence with limited angular resolution and solves the difficulty of pixel matching between distorted images. This work emphasizes the application and usefulness of light field imaging in computer vision whilst improving light field image processing speed and accuracy through signal processing, computer graphics, computer vision, and artificial neural networks
    corecore