52 research outputs found

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance

    Combining Mobile Agents and Process-based Coordination to Achieve Software Adaptation

    Get PDF
    We have developed a model and a platform for end-to-end run-time monitoring, behavior and performance analysis, and consequent dynamic adaptation of distributed applications. This paper concentrates on how we coordinate and actuate the potentially multi-part adaptation, operating externally to the target systems, that is, without requiring any a priori built-in adaptation facilities on the part of said target systems. The actual changes are performed on the fly onto the target by communities of mobile software agents, coordinated by a decentralized process engine. These changes can be coarse-grained, such as replacing entire components or rearranging the connections among components, or fine-grained, such as changing the operational parameters, internal state and functioning logic of individual components. We discuss our successful experience using our approach in dynamic adaptation of a large-scale commercial application, which requires both coarse and fine grained modifications

    Using Process Technology to Control and Coordinate Software Adaptation

    Get PDF
    We have developed an infrastructure for end-to-end run-time monitoring, behavior/performance analysis, and dynamic adaptation of distributed software. This infrastructure is primarily targeted to pre-existing systems and thus operates outside the target application, without making assumptions about the target's implementation, internal communication/computation mechanisms, source code availability, etc. This paper assumes the existence of the monitoring and analysis components, presented elsewhere, and focuses on the mechanisms used to control and coordinate possibly complex repairs/reconfigurations to the target system. These mechanisms require lower level effectors somehow attached to the target system, so we briefly sketch one such facility (elaborated elsewhere). Our main contribution is the model, architecture, and implementation of Workflakes, the decentralized process engine we use to tailor, control, coordinate, etc. a cohort of such effectors. We have validated the Workflakes approach with case studies in several application domains. Due to space restrictions we concentrate primarily on one case study, briefly discuss a second, and only sketch others

    Agent Based Modeling and Simulation Framework for Supply Chain Risk Management

    Get PDF
    This research develops a flexible agent-based modeling and simulation (ABMS) framework for supply chain risk management with significant enhancements to standard ABMS methods and supply chain risk modeling. Our framework starts with the use of software agents to gather and process input data for use in our simulation model. For our simulation model, we extend an existing mathematical framework for discrete event simulation (DES) to ABMS and then implement the concepts of variable resolution modeling from the DES domain to ABMS and provide further guidelines for aggregation and disaggregation of supply chain models. Existing supply chain risk management research focuses on consumable item supply chains. Since the Air Force supply chain contains many reparable items, we fill this gap with our risk metrics framework designed for reparable item supply chains, which have greater complexity than consumable item supply chains. We present new metrics, along with existing metrics, in a framework for reparable item supply chain risk management and discuss aggregation and disaggregation of metrics for use with our variable resolution modeling

    Birds of a Feather Session: “Autonomic Computing: Panacea or Poppycock?”

    Get PDF

    StarMX: A Framework for Developing Self-Managing Software Systems

    Get PDF
    The scale of computing systems has extensively grown over the past few decades in order to satisfy emerging business requirements. As a result of this evolution, the complexity of these systems has increased significantly, which has led to many difficulties in managing and administering them. The solution to this problem is to build systems that are capable of managing themselves, given high-level objectives. This vision is also known as Autonomic Computing. A self-managing system is governed by a closed control loop, which is responsible for dynamically monitoring the underlying system, analyzing the observed situation, planning the recovering actions, and executing the plan to maintain the system equilibrium. The realization of such systems poses several developmental and operational challenges, including: developing their architecture, constructing the control loop, and creating services that enable dynamic adaptation behavior. Software frameworks are effective in addressing these challenges: they can simplify the development of such systems by reducing design and implementation efforts, and they provide runtime services for supporting self-managing behavior. This dissertation presents a novel software framework, called StarMX, for developing adaptive and self-managing Java-based systems. It is a generic configurable framework based on standards and well-established principles, and provides the required features and facilities for the development of such systems. It extensively supports Java Management Extensions (JMX) and is capable of integrating with different policy engines. This allows the developer to incorporate and use these techniques in the design of a control loop in a flexible manner. The control loop is created as a chain of entities, called processes, such that each process represents one or more functions of the loop (monitoring, analyzing, planning, and executing). A process is implemented by either a policy language or the Java language. At runtime, the framework invokes the chain of processes in the control loop, providing each one with the required set of objects for monitoring and effecting. An open source Java-based Voice over IP system, called CC2, is selected as the case study used in a set of experiments that aim to capture a solid understanding of the framework suitability for developing adaptive systems and to improve its feature set. The experiments are also used to evaluate the performance overhead incurred by the framework at runtime. The performance analysis results show the execution time spent in different components, including the framework itself, the policy engine, and the sensors/effectors. The results also reveal that the time spent in the framework is negligible, and it has no considerable impact on the system's overall performance

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference
    corecore