
StarMX: A Framework for
Developing Self-Managing Software

Systems

by

Reza Asadollahi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Reza Asadollahi 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The scale of computing systems has extensively grown over the past few decades in order
to satisfy emerging business requirements. As a result of this evolution, the complexity of
these systems has increased significantly, which has led to many difficulties in managing and
administering them. The solution to this problem is to build systems that are capable of
managing themselves, given high-level objectives. This vision is also known as Autonomic
Computing.

A self-managing system is governed by a closed control loop, which is responsible for
dynamically monitoring the underlying system, analyzing the observed situation, planning
the recovering actions, and executing the plan to maintain the system equilibrium. The
realization of such systems poses several developmental and operational challenges, in-
cluding: developing their architecture, constructing the control loop, and creating services
that enable dynamic adaptation behavior. Software frameworks are effective in addressing
these challenges: they can simplify the development of such systems by reducing design
and implementation efforts, and they provide runtime services for supporting self-managing
behavior.

This dissertation presents a novel software framework, called StarMX, for developing
adaptive and self-managing Java-based systems. It is a generic configurable framework
based on standards and well-established principles, and provides the required features and
facilities for the development of such systems. It extensively supports Java Management
Extensions (JMX) and is capable of integrating with different policy engines. This allows
the developer to incorporate and use these techniques in the design of a control loop in a
flexible manner. The control loop is created as a chain of entities, called processes, such
that each process represents one or more functions of the loop (monitoring, analyzing,
planning, and executing). A process is implemented by either a policy language or the
Java language. At runtime, the framework invokes the chain of processes in the control
loop, providing each one with the required set of objects for monitoring and effecting.

An open source Java-based Voice over IP system, called CC2, is selected as the case
study used in a set of experiments that aim to capture a solid understanding of the frame-
work suitability for developing adaptive systems and to improve its feature set. The ex-
periments are also used to evaluate the performance overhead incurred by the framework
at runtime. The performance analysis results show the execution time spent in different
components, including the framework itself, the policy engine, and the sensors/effectors.
The results also reveal that the time spent in the framework is negligible, and it has no
considerable impact on the system’s overall performance.

iii



Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Ladan Tahvildari for
all her guidance and support over these years. Her advice and encouragement helped me
in all the time of research and writing of this thesis.

I would also like to thank my dissertation committee members: Dr. Kostas Kontogian-
nis and Dr. Rudolph E. Seviora, for having accepted to take the time out of their busy
schedules to read my thesis and provide me invaluable comments and inspiring remarks.

I am very grateful to all members of the Software Technologies and Applied Research
(STAR) group for their cooperation, and specially to my friend, Mazeiar Salehie, for all
his tremendous support, guidance, and thoughtful feedbacks throughout all my research.

My grateful thanks go to my beloved wife, Negin, who has always been extremely
understanding and supportive. My love and passion for her go far beyond the expressive
power of words.

Last but not least, I would like to thank my lovely four-month-old son, Arvin, for
staying calm and letting me work on this dissertation.

iv



Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 6

2.1 Enabling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Adaptation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problem-Specific Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Design Solutions for Dynamic Adaptation . . . . . . . . . . . . . . . . . . 11

2.5 Other Experimental Researches . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Proposed Framework: StarMX 15

3.1 Software Frameworks: Concepts and Definitions . . . . . . . . . . . . . . . 15

3.2 Requirement Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Enabling Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.3.1 Java Management Extensions (JMX) . . . . . . . . . . . . . . . . . 20

3.3.2 Policy Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 High-level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Framework Architecture 27

4.1 Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Execution Chain Architecture . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Realization Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Runtime Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Runtime Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Developing Self-Managing Application 42

5.1 Development Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Sample Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Framework Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 MBeanServers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 MBeans and MXBeans . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 JavaBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.4 Monitor MBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.5 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.6 Execution Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Experimental Studies 56

6.1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



6.2.1 Making Case Study Self-Managed . . . . . . . . . . . . . . . . . . . 58

6.2.2 Testing the Self-Managed Case Study . . . . . . . . . . . . . . . . . 60

6.3 Discussion and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.1 Framework Capabilities Discussion . . . . . . . . . . . . . . . . . . 63

6.3.2 Quality Attributes Review . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusion and Future Directions 72

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

APPENDICES 75

A Sample StarMX Configuration File 76

References 86

vii



List of Tables

5.1 StarMX Configurable Items . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Framework Capabilities Summary . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Performance Analysis Result . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



List of Figures

1.1 Self-* Properties Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Self-Managing Application Enabled by StarMX, JMX, and Policy Engine . 21

3.2 JMX Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 StarMX High-level Static Architecture . . . . . . . . . . . . . . . . . . . . 24

4.1 Execution Chain Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Process Classes and Integration with External Policy Engines . . . . . . . 31

4.3 Autonomic Manager Architecture presented by IBM . . . . . . . . . . . . . 33

4.4 Dynamic Control Loop Construction: An Example . . . . . . . . . . . . . 36

4.5 Process Execution Sequence Diagram . . . . . . . . . . . . . . . . . . . . . 39

4.6 Policy-based Process Execution Steps . . . . . . . . . . . . . . . . . . . . . 39

4.7 MBean Type Anchor Object Invocation From a Process . . . . . . . . . . . 40

4.8 ExecutionContext Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Required Steps to Develop a Self-Managing Software System . . . . . . . . 43

6.1 Self-Managing CC2 Architecture Enabled by StarMX . . . . . . . . . . . . 61

6.2 Adaptation Cost Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



Chapter 1

Introduction

Over the past few decades, the complexity of computer-based systems has increased signifi-
cantly. The new large-scale distributed systems provide lots of facilities and features. They
are also integrated into corporate-wide computing systems that provide more services. The
ever-increasing complexity of computing systems results in difficulties in managing these
systems and maintaining their Quality of Service (QoS) requirements [34, 51]. A solution
is to create systems that are able to manage themselves in order to address these issues dy-
namically, based on a set of high-level objectives, and with minimum human intervention.
This approach is also known as Autonomic Computing [51].

According to [41], autonomic computing refers to a computing environment that is
capable of managing itself, and can dynamically adapt to changes in accordance with
business policies and objectives. An autonomic system refers to a system with a control
loop, which monitors itself and its environment, analyzes the situation, and takes actions to
change either the environment or its behavior. Autonomic computing is a broad research
area, which includes systems from different domains like hardware, robotics, networks, grid
computing, and software. In the context of this research, we focus only on self-adaptive
software systems .

Self-adaptive software aims to adjust its behavior based on the information it collects
from itself and its execution context. Therefore, the system exhibits two basic charac-
teristics: self-awareness, which means that the system is aware of its state and behavior,
and context-awareness, which means that the system is aware of its operational environ-
ment [34, 37]. IBM also defines four characteristics of these systems, which reflect different
aspects of self-management [41]:

• Self-configuring : The system capability of adapting to changing conditions and ad-

1



justing itself automatically. It also enables addition/removal of components to/from
the system dynamically.

• Self-optimizing : The system capability of monitoring and measuring performance
related parameters in varying conditions and optimizing its behavior in order to
meet performance objectives.

• Self-healing : The ability to detect, diagnose, and repair problems. This property
may also enable the system to proactively prevent failures from happening in the
future. It improves software reliability and availability.

• Self-protecting : The ability of a system to detect malicious attacks and to defend
itself against them.

All of these properties are often called self-* properties, and a hierarchical view of them
is presented in [78] (See Figure 1.1). The picture shows that self-awareness and context-
awareness are fundamental characteristics of other properties, and self-adaptiveness or
self-managing is achieved by enabling major level properties.

Self-Adaptive Software: Landscape and Research Challenges • 14:5

Fig. 1. Hierarchy of the self-* properties.

in an appropriate form after installation in order to evaluate the system and
respond to changes at all time. Such a closed loop deals with different changes
in user requirements, configuration, security, and a number of other issues.

2.2 Self-* Properties

Adaptivity properties are often known as self-* properties. One of the initial
well-known set of self-* properties, introduced by IBM, include eight properties
[IBM-AC 2001]. This section discusses these properties, along with some other
related ones, towards providing a unified hierarchical set, which will be used
in the rest of the article.

2.2.1 A Hierarchical View. Figure 1 illustrates a hierarchy of self-* proper-
ties in three levels. In this hierarchy, self-adaptiveness and self-organizing are
general properties, which are decomposed into major and primitive properties
at two different levels. The rest of this section further elaborates on each level
of this hierarchy.

—General Level. This level contains global properties of self-adaptive soft-
ware. A subset of these properties, which falls under the umbrella of self-
adaptiveness [Oreizy et al. 1999], consists of self-managing, self-governing,
self-maintenance [Kephart and Chess 2003], self-control [Kokar et al. 1999],
and self-evaluating [Laddaga 2006]. Another subset at this level is self-
organizing [Jelasity et al. 2006; Serugendo et al. 2003], which emphasizes
decentralization and emergent functionality(ies). A system with such a prop-
erty typically consists of many interacting elements that are either absolutely
unaware of or have only partial knowledge about the global system. The self-
organizing property is bottom-up, in contrast to self-adaptiveness, which is
typically top-down. Although most of the concepts in this article are applica-
ble to the self-organizing property, this property is not the primary concern of
this survey work. Noting the amount of research dealing with self-organizing
systems, a separate survey would be needed to adequately cover this emerg-
ing area.

—Major Level. The IBM autonomic computing initiative defines a set of four
properties at this level [Horn 2001]. This classification serves as the de facto

ACM Transactions on Autonomous and Adaptive Systems, Vol. 4, No. 2, Article 14, Publication date: May 2009.

Figure 1.1: Self-* Properties Hierarchy

In the literature, there is no clear distinction between the terms autonomic, adaptive,
self-adaptive, and self-managing system. In this dissertation, all of these terms are used to
refer to the same concept and are used interchangeably.

2



1.1 Problem Description

Researchers aim to provide solutions to enable self-* properties and to incorporate self-
adaptation behavior in software systems. Kephart [50] categorizes the research challenges
involved in the realization of self-managing solutions. In particular, the design and architec-
tural concerns of self-managing components and systems, as well as the related technologies
that support fundamental issues such as monitoring, event correlation, and constructing
a feedback loop are among these challenges. Software frameworks can effectively support
this category of challenges. They can provide a design solution and a reusable code base for
common and recurring problems in the construction of such systems, thereby simplifying
the development of self-managing systems, and eliminating the need to reinvent the wheel.

A key characteristic of such a framework is reusability, which extends the usage do-
main of the framework. The proposed software frameworks for self-adaptation are mostly
designed for a particular problem, have dependencies on other frameworks or execution
environments, or lack some necessary features. These limitations affect their reusability
and generality. This is one of the current research gaps in this area.

Moreover, self-adaptation solutions should rely on standards and well-established prin-
ciples to enable interaction between the management layer components and the underlying
system [41]. This aspect can also be supported by an appropriate framework. Two key
enabling technologies in this area that have been improved in recent years are:

• Java Management Extension [82]: The de facto standard for application management
in enterprise Java-based systems.

• Policy engine: An engine for execution policies. Policies are extensively used for
describing adaptation logic, and there are many commercial and open source policy
engines.

These two techniques are standard solutions in the field, and they complement each
other. There is therefore an opportunity to utilize and integrate these solutions by a
framework, in order to facilitate building self-managing systems.

This research effort presents a novel software framework as a step towards addressing
the mentioned challenges and filling the gap in the research area. The proposed framework
provides a set of fundamental features and facilities for creating self-managing solutions.
These elements should be utilized by a developer to build a complete solution. For example,
the control loop is a common pattern of such systems. Using our framework, the developer
does not need to think about the architectural design of the loop; instead he/she can
concentrate on the logic of the control loop.

3



1.2 Thesis Contributions

The major contribution of this thesis is to provide a solution to the common problems of
self-managing systems. It presents a novel software framework that simplifies the develop-
ment of such systems and improves productivity. It is able to integrate different available
techniques and mechanisms to support self-adaptation (e.g. JMX or policies). It aims to
separate the generic aspects of self-adaptation from its problem specific parts, and pro-
vides a reusable solution for recurring problems in the domain of Java-based systems. It
is generic, in the sense that it has no dependency on any specific software tool and can be
used to address different self-* properties. The developer utilizes the framework provided
features, configures the framework, and deploys it to the operational environment to enable
self-management behavior.

The following summarizes the contributions of this research:

• It presents a simple and flexible approach to construct control loop via a configurable
sequence of processes.

• It supports different mechanisms for describing management logic (e.g. programmatic
or descriptive), which specifies what should be done and when.

• It enables access to different sensor and effector components through a standard
approach.

• It provides solutions to common monitoring techniques, which can be incorporated
into the control loops.

• It effectively addresses the separation-of-concerns principle by keeping management
logic separate from application logic.

• It supports several mechanisms to enable communication between self-managing el-
ements.

• It provides a runtime infrastructure and environment that contains self-managing
elements and enables dynamic adaptation behavior.

• It prepares a platform for more research efforts in this area, allowing different adap-
tation solutions to be implemented and tested.

• It is available as an open-source project, which enables its extension and usage by
other researchers and industry practitioners.

4



1.3 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents a literature review of research related to this work. It first outlines
useful techniques for enabling self-adaptation behavior. It then summarizes a set of software
frameworks that support dynamic adaptation. A discussion on solutions towards self-
healing problems is presented next, followed by a section that describes the approaches for
designing self-managing systems. Finally, some experimental efforts arereported.

Chapter 3 provides an overview of the proposed framework and its conceptual architec-
ture. First, a brief discussion on the importance and role of software frameworks in building
large software systems is presented. Then, the functional and non-functional requirements
of our framework are outlined. The next section describes how different technologies are
integrated into the framework to provide a management platform for different applications.
The last section presents the architecture of our work from a high-level point of view and
elaborates its key features and characteristics.

Chapter 4 explains the architecture of our framework in terms of its components and
their interactions. In the first section, the core component of architecture, i.e. the execu-
tion engine, is described, followed by a discussion on how control loops are supported in
the architecture. Next, several services provided by the framework to enable its runtime
behavior are outlined. Finally, we demonstrate how the framework operates at runtime
and how self-managing behavior is enabled by the system.

Chapter 5 describes a five-step process for developing a self-managing system using
the proposed framework. It first defines the required steps of the process. It then gives
some examples and sample scenarios to clarify the process. The next section presents the
configuration properties of the framework, along with their meanings and attributes.

Chapter 6 reports the conducted experimental studies that evaluate the effectiveness
of our framework. In the first section, we describe the case study, which is a voice-over-IP
system. In the next section, we define the research objectives of the experiments and how
they are analyzed. The last section provides a discussion on the results of the experiments
and reports framework performance analysis results.

Finally, Chapter 7 finishes the thesis by drawing conclusions from the presented re-
search. It discusses future directions for the research, and outlines some concluding re-
marks.

5



Chapter 2

Related Work

Researchers and practitioners have proposed a variety of approaches and techniques to
support dynamic adaptation and management. These solutions address different aspects
of the self-adaptation problem, and they can be classified, for example, based on how, when,
and where adaptation takes place in the system [62]. A comprehensive taxonomy is also
presented in [78] to categorize self-adaption solutions. This is a hierarchical taxonomy, and
its first level includes: a) Object to Adapt, which deals with what and where questions; b)
Realization Issues, which correspond to how questions; c) Temporal Characteristics, which
concern the when aspect; and d) Interaction Concerns, which deal with where, when, what,
and how questions. These taxonomies cover a broad range of research in the field, and
are suitable for analyzing and comparing the quality of adaptation achieved by different
solutions. Considering the scope of this research and its focus of attention, we categorize
the related research efforts as follows.

Section 2.1 outlines common techniques used for sensing and effecting purposes. These
techniques are often utilized by different frameworks to create a control loop. Section 2.2
describes more closely related topics to our work, including several approaches that present
an infrastructure or a framework to support self-management at runtime. It also discuses
several design solutions that facilitate building autonomic elements or systems. Solutions
that are concerned only with a specific self-* property, like self-healing, are covered in
Section 2.3. Section 2.4 explains several conceptual models and languages, which aim to
capture the adaptation behavior and to correlate adaptation actions to system events.
Finally, various empirical studies and experimental research, which are not supported by
a framework but related to the topic of this research, are discussed in Section 2.5.

6



2.1 Enabling Techniques

Separation-of-Concerns is considered to be one of the enabling technologies for building self-
managing systems [62]. Adaptation logic is a cross-cutting concern and must be maintained
separate from business logic. Separating such concerns from the functional logic facilitates
development and maintenance of the system. Aspect Oriented Programming (AOP) is a
widely used technique that enables this property. AOP provides a facility to develop cross-
cutting concerns in modules called aspects. Aspects are merged with the application code
by a separate compiler or dynamically. This process is called weaving, and the compiler is
the aspect weaver. The locations in the code that are woven by aspects are point-cuts.

Sensors and effectors are parts of the adaptation logic that directly interact with the sys-
tem components or resources. AOP is a useful technique to build these components [62, 78].
Several research efforts utilize this approach; for example, CASA [65], TRAP/J [73], and
TRAP/BPEL [26]. [75] also reports some experience in using dynamic aspects for sensing
and effecting. Quality Objects (QuO) [58] is an aspect-based framework for developing dis-
tributed adaptive applications with QoS requirements. It proposes a set of aspect languages
to define QoS states, mechanisms for monitoring resources, and adaptation behavior. The
QuO adaptation model and aspect model are elaborated in [25] and are compared with
other aspect-oriented languages like AspectJ [8].

Design patterns provide reusable solutions to recurring problems in software systems.
Several design patterns including Wrapper, Proxy, and Strategy [28] are mentioned as effec-
tive patterns to implement adaptation solutions, particularly for effectors to change some
artifacts and apply actions [62, 78]. Such patterns facilitate interactions between effector
components and underlying resources. CASA [66] employs the Bridge design pattern [28]
to replace a component dynamically. [58] and [73] also use the Wrapper design pattern.
In another research effort, the Observer [28] pattern is used for monitoring and the Strat-
egy [28] pattern is used for effecting [11]. Moreover, Oreizy et al. [71] discuss conductive
architectural patterns, such as Pipe-and-Filter and Publish-Subscribe, which are utilized
by [7, 79] for supporting dynamic adaptation behavior.

Using policies or rules in the if-condition-then-action format is cited as an effective
technique in autonomic systems to declare the required adaptation behavior (e.g. [3, 15,
49, 59, 81, 89]). The main advantage of this approach is its simplicity. Policies can be
used as a simple technique to create a closed control loop such that appropriate actions
are executed when special conditions are met.

Computational reflection is another key technology for self-adaptive systems [62]. This
refers to the system’s ability to observe or to alter itself dynamically. Reflection can be

7



either structural or behavioral. It consists of two activities: introspection to observe the
current state, and intercession to modify the system. The Apapta framework [79], described
in the next section, and TRAP/J [73] have been designed based on this concept. TRAP/J
is a software tool for making Java applications adaptable. It focuses on effecting techniques
and applies behavioral reflection and AOP to achieve its goal. It augments the program
code with extra code and aspects to transform Java classes into adaptable code.

Another well-known technique for sensing and effecting is Java Management Extensions
(JMX) [82]. It provides a standard instrumentation mechanism to observe system state
and to invoke management commands. Besides our framework, this approach is supported
by other research efforts, for example [2] and [31].

Using Web Services as instrumentation interfaces of systems is an emerging standard.
For example, Web Services Distributed Management (WSDM) [69] defines a standard for
managing heterogenous resources. In this approach, web services are used as sensors and
effectors of remote systems. Martin et al. report their experience in using the WSDM
standard and autonomic Web Services [60].

2.2 Adaptation Frameworks

Several software frameworks and tools have been proposed by researchers and practitioners
to assist in enabling self-managing capabilities and building autonomic systems. They aim
to support building a complete control loop to address self-management concerns. Some of
these solutions have been designed for particular techniques, while others offer more generic
approaches applicable to different contexts. However, one of the common properties in all
these solutions is their support for the separation-of-concerns principle, which enables
maintaining the adaptation logic separate from the application code. In this section, we
elaborate several frameworks from the literature and outline their key capabilities and
features.

Rainbow is a framework for supporting self-management concerns using knowledge
of the system architecture [29]. The adaptation infrastructure consists of components
categorized into three layers: the system-layer, which includes sensors and effectors; the
architecture-layer, which serves as the adaptation engine and includes different functions
for the control loop; and the translation-layer, which maps low-level system properties to
their corresponding architectural attributes. The adaptation logic is defined by a specific
language supplied by the framework [19]. It captures the adaptation logic in the form of
tactics, which represent a condition-action scenario for a specific problem; and strategies,

8



which represent a flow of actions with decision points to fix system problems. Each strategy
is defined as a tree of tactics that tackles common quality issues, with conditions describing
each branch. However, the difficulty of describing the systems architecture as expected by
the framework, and its limitations in dealing with environmental properties are some of
the concerns with using this solution.

In another work, the Accord framework is presented to support the development of
autonomic elements and their composition via dynamic rule definition [57, 56]. Autonomic
elements are defined by means of the functional port, which serves as the functional in-
terface of the managed component; the control port, which serves as set of sensors and
actuators and the constraint set that controls access to them, and the operational port,
which serves as the interface to formulate, inject, and manage rules, and encapsulates a
set of rules used to manage the runtime behavior of the element. To enable the dynamic
management of components, it proposes a rule language as well as a rule execution engine.
It is a part of a big project, and has been designed based on the assumption that several
other frameworks are available in the execution environment. This dependency issue affects
the reusability of the framework in different environments.

The J3 Process, presented in [87, 88], proposes a model-driven environment to support
fine-grained self-management. It consists of a development tool and a framework that sup-
ports required runtime services. In this process, the management logic is visually defined
at the component level in some models using J2EEML. The models are used by Jadapt
to generate the artifacts required at runtime for self-management. JFense is a reusable
framework, which uses the generated artifacts at runtime for monitoring, analyzing, plan-
ning, and executing. The J3 process is limited to deal with EJB components only and
cannot be utilized for managing different types of resources or system-wide properties.

Adaptive Server Framework (ASF) was designed to support adaption behavior in server-
based systems [31]. It helps the separation of management logic from business require-
ments. The ASF architecture consists of two layers: the management-layer, which includes
mechanisms and services used to monitor the runtime behavior of the application, and the
adaptive-component-layer, which consists of several components to collect data, analyze
the state, and tune the system’s behavior. To construct a control loop, sensor, monitor,
analyzer, and effector components must be developed using pre-defined interfaces. Their
composition is defined in a configuration file, and they are governed by a set of policies
presented in XML format. More information about this framework and its evaluation re-
sults can also be found in [32]. ASF states that the management layer is based on JMX,
but the role of this technology and its relationship with sensor and effector components
have not been clearly specified. The XML format for policies looks too verbose.

9



Autonomic Management Toolkit (AMT) [2] is also an adaptation support framework,
which employs rule engines for reasoning and decision making, and JMX for sensing and
effecting purposes. It can be integrated with different rule engines through an inter-
face, which eliminates the dependency on a particular decision-making engine and enables
switching to other engines. This framework is limited to rules for describing management
logic and supports no other mechanisms.

Mukhija et al. present CASA (Contract-based Adaptive Software Architecture) as a
framework to enable dynamic adaptation via component recomposition at runtime [65,
66, 67]. CASA offers a runtime environment to monitor changes in the system and to
apply adaptations when needed. Adaptation policies are defined in the form of XML-
based contracts, thereby separating adaptation concerns from the application logic. This
framework supports different adaptation techniques, including: dynamic change in lower-
level services, dynamic weaving and unweaving of aspects, dynamic change in application
attributes, and dynamic recomposition of components, in order to address adaptation
requirements in a diverse set of systems. CASA monitors the system at runtime, and in the
case of detecting a change, it evaluates the application contracts and applies the required
adaptations as described in the contract. As mentioned before, it employs AOP and the
Bridge design pattern as two enabling techniques for effecting. The dynamic recomposition
of components imposes several constraints on the design of application components, and
its performance is arguable.

Presented in [79], Adapta is a framework for developing self-adaptive component-based
systems. It provides a runtime environment for monitoring different properties of system
resources and generating events if changes are detected. The events notify the adapta-
tion engine to execute reconfiguration actions. The adaptable elements and reconfigurable
actions are defined using an XML-based language, called AdaptaML. Any modification
to this XML is detected by the framework at runtime, allowing dynamic introduction or
removal of adaptation actions. The adaptation actions are updating application parame-
ters and replacing algorithms with a well-defined state transfer mechanism. Built above
the CORBA middleware, this framework utilizes the Publish/Subscribe design pattern to
handle events, and computation reflection to apply reconfiguration actions. Although it
provides a distributed event processing mechanism, it offers a limited set of adaptation
actions, which is attributed to the lack of a standard approach in sensing and effecting.

Another group of research in this area present a multi-agent view of autonomic systems.
The Cognitive Agent Architecture (COUGAAR) [35] is an open source distributed agent
infrastructure that provides foundations for several research efforts. Gracanin et al. [33]
present a two-layer architecture based on COUGAAR for developing autonomic applica-
tions. The architectural layers provide a translation between domain specific concerns and

10



COUGAAR facilities to support dynamic adaptation. [44] also presents an infrastructure
on top of the COUGAAR architecture, which maps different COUGAAR features to au-
tonomic computing concepts, enabling self-managing system development. For example,
it utilizes the COUGAAR plug-in model to construct the MAPE loop components, and
the blackboard model as the communication medium. DOSE [13] is another agent-based
platform capable of semantically searching web resources. It is an autonomic system that
can manage and optimize its knowledge-base through a set of sensors and interaction with
external services [12].

2.3 Problem-Specific Solutions

Several research efforts aim to address only particular aspects of autonomic systems. A
majority of this group deal with fault recovery and reliability/dependability improvement,
enabling systems with self-healing capabilities. [22] and [30] propose approaches that rely
on the architectural model of the system to provide self-healing. In [80], Shin presents a
two-layer model for designing self-healing components. One layer is the healing layer and
the other is the service layer. Bellur et al. [10] propose a probabilistic model based on
Bayesian Belief Networks (BBNs) to capture failure propagation into system components,
and use the model to identify and isolate the root cause of failure and then to initiate a
recovery plan.

Candea et al. present an autonomous recovery technique supported by a framework to
reduce downtime in J2EE systems [16, 17]. The approach utilizes a technique called micro-
reboot (component reboot) as the means of recovery and repair to address self-healing
concerns in these systems. The framework detects the anomalies at runtime and reports
them to the recovery manager module to decide which components must be restarted.
While the framework is effective in particular cases, it is limited to the reboot technique
and cannot be considered a general-purpose autonomic framework for self-healing.

2.4 Design Solutions for Dynamic Adaptation

A different category of research in this area provides architectural or design solutions for
self-adaptive and self-managing systems. One of the most widely referenced efforts is
IBM’s architectural blue print for autonomic computing [41]. IBM describes the design
of autonomic managers, as the adaptation regulator entities, and their orchestration to
construct a full autonomic architecture. An autonomic manager is a component that

11



implements a control loop to automate the management functions and to externalize the
management logic from the application resource. The control loop is often called MAPE
loop, which is comprised of four modules: monitoring, to collect needed data from the
system; analyzing, to diagnose and reason about the observed situation; planning, to decide
about the appropriate actions; and executing, to perform the actions. These modules are
supported by a knowledge-base containing the guidelines and policies. Autonomic manager
is also considered to be a manageable resource that can be controlled by other autonomic
managers.

Kramer and Magee suggest a three-layer architecture model for handling self-management
concerns [52]. The layers are hierarchical and deal with event at different levels of abstrac-
tion. The lowest layer is close to the real system and provides fast responses to the changes
in the environment. If it is unable to reasonably react to that event, it reports the event to
the next layer, which has more information about the system objectives and other compo-
nents. This layer in turn tries to manage the situation and will report it to the top-most
layer to be processed.

Goal-Attribute-Action-Model (GAAM) [77] is an approach for enabling adaptive be-
havior based on the system goals. This approach models the system’s high-level objectives
in the form of goals. It identifies the system attributes to be observed and the actions
to be taken. Each goal provides a logical relationship between a set of attributes and a
set of actions, which is defined by the conditions of the attributes and a prioritized list of
appropriate actions. Goals are continuously evaluated to check whether they are satisfied.
There is also a voter component, which collects the preferred action list of different goals
and makes the final decision by incorporating the knowledge of conflicting actions and their
priorities. The output of the voter will be the final set of actions that should be executed
in response to the observed situation.

Autonomic System Specification Language (ASSL) is a formal language for describing
autonomic systems [84]. It is used to formally define an autonomic system architecture
and properties of its autonomic elements. The language models the system architecture in
three tiers: a) Autonomic System, which includes high-level service level objectives and self-
managing policies; b) Autonomic System Interaction Protocol, which includes messages,
negotiation protocols and communication channels; and c) Autonomic Element, which
consists of detailed service level objectives, policies, events, actions, etc. The architectures
of the autonomic elements are further elaborated in [85], which shows their functional units
and their centralized and distributed architectural styles.

An architectural solution for managing server-based systems is also presented in [90],
which has the capabilities of both predictive and reactive autonomicity approaches. In

12



this model, a generic controller system is designed to provide predictive decisions by a
feed-forward control strategy based on the inputs to the controlled system; and to support
reactive behavior by a feed-back strategy based on the results of comparing the desired
behavior and the observed data. Several other modules including the data collector, data
processor, predictor, and comparator are also involved in supporting the controller module.
In a different research effort, the key considerations for designing autonomic systems and
autonomic elements are discussed [89]. The required supportive services (e.g. registry,
broker, and negotiator) and design patterns for addressing different self-* properties are
also described.

2.5 Other Experimental Researches

In this section, we outline a few other related studies that report experience in building
self-managing systems.

In [1], Abdellatif describes how the management of middleware can be improved by
a component-based design. The research concentrates on J2EE application servers and
shows how a fractal component model [14] is suitable for designing an arbitrary number of
controllers for both primitive and composite components. In this model, each component
is a unit of management and can be reconfigured at runtime. This approach is evaluated
for managing the application server to provide the best performance and availability for
the deployed applications and services. Desertot et al. [23] also present a J2EE server
model that is capable of addition/removal of server instances dynamically to/from a server
cluster to deal with load variability at runtime.

In the context of service-oriented architectures (SOA), in which applications consist of
several services, dynamic service adaptation has gained a lot of attention in recent years,
due to the importance of service availability. One technique to address this challenge is to
replace a service implementation dynamically when the service becomes faulty [42]. This
study presents a framework and employs the proxy design pattern to replace the service
smoothly.

2.6 Summary

This section outlined a group of research efforts related to the topic of this thesis. We
learned that no one adaptation approach can be preferred over all others, and that there is

13



no agreed-upon solution to meet the concerns and challenges of software adaptation. We
also demonstrated that there is a diverse set of studies in this area and that researchers deal
with the problems from different perspectives and at different levels of abstractions ranging
from conceptual to implementation-specific approaches. The key is to understand their
advantages and limitations and either combine them or use each in their best performance
environment. Another observation is that the presented frameworks for enabling dynamic
adaptation are not generic enough to be applicable in different contexts, and that they have
been designed to provide a particular solution to a specific problem. This is one of our
motivations to develop a multi-purpose generic adaptation infrastructure, which allows the
developer to incorporate his/her desired techniques, while providing solutions for recurring
problems in the autonomic domain.

The next two chapters will describe the design and architecture of our proposed frame-
work. Chapter 3 provides a high-level view of the framework, while Chapter 4 presents
more detail by discussing its internal architecture and behavior.

14



Chapter 3

Proposed Framework: StarMX

This chapter presents an overview of the proposed framework, called StarMX, which aims
to address the challenges of self-managing systems development. StarMX is a generic
framework which incorporates dynamic adaptation behavior into software systems and
facilitates enabling self-* properties in them. It also shapes the design of self-managing
systems by providing an infrastructure and fundamental features for constructing closed
control loops. The motivation for this research and for designing this framework originates
from the lack of a reusable design approach that is applicable in different contexts and
suitable for addressing different self-managing aspects. This framework has been released
as an open source project 1, allowing researchers and industry practitioners to work with
it and to provide feedback to improve it.

In this chapter, we first provide a brief overview of software frameworks and their role
in software development. Next, we discuss the key requirements for enabling self-managing
solutions. We also present the technologies supported by the proposed framework and its
conceptual architecture.

3.1 Software Frameworks: Concepts and Definitions

In the object-oriented domain, a software framework is defined as a reusable, semi-complete
software that provides an abstract design for a family of related problems, which can be
instantiated in different applications [47]. In relation to architecture, it is defined as “a
micro-architecture which provides an incomplete template for the system within a specific

1http://sourceforge.net/projects/starmx/

15



domain” [43]. According to the definitions, a key characteristic of a framework is that it is
intrinsically incomplete, which means that there are certain classes or methods used by the
framework that are missing, and they must be provided by the developer to instantiate the
framework. These missing parts are often called slots or hooks, which enable integrating
the framework with its usage environment [55].

Nowadays, software frameworks are widely used in industry for addressing different
technical problems. Open source communities have considerably improved the quality
of software and reduced development effort by providing reusable, and platform spe-
cific/independent frameworks based on recent technologies. For example, Hibernate [36] is
a very popular object-relational mapping persistence framework used in Java-based appli-
cations, and Struts [6] is a framework which facilitates web tier component development
in server side Java EE systems.

Fayad et al. [27] summarize the key benefits of object-oriented software frameworks as
follows:

• Reusability: A framework provides design and code reuse and substantially im-
proves productivity by eliminating the need to rebuild and revalidate the solution to
a recurring problem.

• Inversion of Control: This is the runtime characteristic of a framework, which
differentiates it from a class library. A framework maintains its own thread of control,
manages the sequence of execution, and invokes application objects at appropriate
moments through well-defined interfaces.

• Modularity: A framework encapsulate the design and implementation of a specific
problem and enhances system modularity.

• Extensibility: A framework allows extending or overriding its behavior at certain
places by providing stable interfaces and hook methods.

Frameworks also have close relationships with other reuse techniques like patterns and
class libraries. The main similarities and differences of a framework with the mentioned
techniques can be summarized as:

• Framework vs. Pattern: A pattern is only a design solution to a recurring prob-
lem. It is of logical nature and is language independent. A framework provides
both design and implementation solutions for a problem in a specific programming
language. A framework may also include the physical realization of several design
patterns to address a problem [21].

16



• Framework vs. Library: A library is a collection of implementation classes that
provide a set of services. A Framework is an extension of a library with inversion of
control capability. It is active, has its own sequence of control, and invokes application
objects, while a library is typically passive and is invoked by the application.

Software frameworks facilitate the design and implementation of software systems by
enhancing reusability and improving productivity. Therefore, in designing a framework,
it is important to take into account the point of view of a developer who wants to use
the framework. The design challenges of a framework include development effort, learning
curve, and integrability [27]. The quality of addressing these challenges affects the usability
and reusability of the framework:

• Development effort: the amount of effort needed to instantiate and adapt a frame-
work in a particular context.

• Learning curve: the period of time needed for a typical developer to learn when
and how to use the framework properly. It is also defined as the complexity of the
framework from the developer’s point of view

• Integrability: ease with which the framework can be integrated with a usage envi-
ronment. Standard-compliant frameworks have better integrability with their execu-
tion contexts.

3.2 Requirement Definition

The StarMX framework aims to support dynamic adaptation behavior in software systems
and to facilitate developing self-managing systems. Therefore, the framework must provide
an appropriate infrastructure and facilities to help the developer to build a self-managing
environment. It must capture the commonalities in the design and development of such
systems and should not enforce a particular approach to the problem. Some of the basic
design concerns that a developer must deal with and needs to find a solution for are listed
here:

• How to build closed control loops and create autonomic elements?

• How to find and access the sensor and effector components within the control loop
modules?

17



• How to enable the control loops to perform adaptation?

• How to design a knowledge repository for the control loops and enable data commu-
nication among different control loops? The repository can be used to store the
historical data related to the system state observations and the decisions made in the
control loop in response to the discovered problems.

To achieve the framework objectives and to clearly address its desired goals, we have
identified a set of key requirements. They are used as the basis for designing our frame-
work’s architecture. The requirements are categorized as being functional or non-function.
Although self-managing requirements are considered to be non-functional requirements of
software systems, in the context of our framework, the requirements that deal with self-
management capabilities are the core functionalities of the framework. Non-functional
requirements take quality attributes like performance and scalability into account.

The set of functional requirements include:

• FR1: Control loop creation - The framework must provide facilities for creating
control loop, which is the key characteristic of a self-managing system that correlates
sensory inputs to adaptation actions. This facility must be flexible in design, in
the sense that it should provide the opportunity for the developer to apply different
techniques or algorithms for self-management.

• FR2: Compatibility with IBM’s architecture - The reference architecture for
autonomic managers, presented in [41], is one of the standard approaches in this re-
search area. The StraMX framework must enable the realization of that architecture
and allow incorporating modules for monitoring, analyzing, planning, and executing.
Section 4.1.2 discusses how we addressed this requirement.

• FR3: Sensor/effector lookup - Sensor and effector components are used in the
control loop to observe system state and to apply adaptation actions. The framework
must support mechanisms to enable access these components from the control loop.

Regarding the design of sensor and effector components, we believe that these com-
ponents are problem specific and their internal designs depend on the domain and the
software application designated to be managed. These components usually interact
with other components in the target system and there is a coupling between them.
For example, a sensor component that provides some information about the system’s
current performance extracts this data from the internal system components or the
application server resources, and it may not be a generic component. Therefore, the

18



internal design of these components is not within the scope of our framework. Instead,
StarMX should support standard mechanisms, like JMX, to access the components.

• FR4: Control loop activation - The framework must provide a means for trigger-
ing control loop execution at runtime. These are often called monitoring techniques:
two common methods are timer-based and event-based.

• FR5: Information repository - To store important data about the current status
of the system at runtime, an information repository is required. The stored historical
data are used for better decision making and management in future.

• FR6: Communication - A self-managing system typically contains several control
loops to deal with different aspects of self-management at the level of different re-
sources or components. Each control loop may require some information about other
control loops to make a decision, or it may need to notify another control loop about
the occurrence of an event. The framework must provide mechanisms which enable
these kinds of communications.

• FR7: Separation of Concerns - Self-managing requirements are considered as
non-functional requirements of a system and they should be maintained separately
from those systems. The proposed framework must be designed to address this
principle.

• FR8: Standard-based - The framework must take advantage of existing standards
and well-established principles (such as JMX and policies) instead of proposing new
concepts, languages, or models to address the above requirements. This property will
enhance reusability, minimize the learning effort, and facilitate framework integration
with different target contexts.

In the non-functional requirements, we are more concerned with the following proper-
ties. However, several other quality attributes like reusability, flexibility, and extensibility
should have also been considered in the design of this framework in order to improve the
quality of the final product.

• NFR1: Performance - Performance is one of the major concerns in self-managing
systems. Adaptation logic will affect the overall system performance due to the cost
of sensing, effecting, and decision making. This framework aims to minimizes the
performance overhead by applying efficient techniques. Our performance objective
is to reduce the amount of time spent in the framework to lower than 1 millisecond
per adaptation (This consideration is based on our previous experience in this field).

19



• NFR2: Scalability - This property shows how well a system can handle a growing
amount of load. Because of adaptation, if the performance overhead imposed on
the system is significant, the scalability of the framework becomes more important.
The framework must be able to transfer the adaptation load to another machine or
remotely manage the system.

• NFR3: Simplicity - The framework utilization and employment must be simple,
in order to reduce the development effort and to decrease the learning curve as well.

• NFR4: Manageability of the framework itself - As a software component that
exists in the system at runtime, the framework may face situations that need dynamic
adaptation. The framework should expose a set of sensor and effector components as
its manageability interfaces to be used by other management frameworks or consoles.

In the following sections, we describe the framework’s conceptual architecture and show
how these requirements are addressed.

3.3 Enabling Technologies

Different technologies support the realization of self-managing solutions by providing mech-
anisms for sensing and effecting or describing management logic. StarMX utilizes JMX and
policy engine as two standard technologies, and combines them into an integrated man-
agement framework to provide an infrastructure for building self-managing applications.
In short, StarMX enables using JMX sensors and effectors in policies for decision making.
Supporting these two technologies, makes the framework standard-compliant and enhances
its usability and reusability, thereby addressing FR8.

Figure 3.1 illustrates an external view of StarMX and its interactions with JMX and
a policy engine. The presented combination provides an infrastructure to manage the
underlying software application and to create a self-managing environment. Note that the
arrows show the direction of interactions.

3.3.1 Java Management Extensions (JMX)

JMX provides a standard approach for application instrumentation for the purpose of state
observation and command invocation in the domain of Java-based systems. It presents an

20



Software Application

Management Logic 
(policies, rules...)

Manage

StarMXJMX Policy 
Engine

Figure 3.1: Self-Managing Application Enabled by StarMX, JMX, and Policy Engine

architecture, design patterns, and APIs for application management. In this section, we
present a brief overview of this technology, followed by its relationship with StarMX.

The JMX architecture offers the following main benefits to applications:

• It provides a standard mechanism for managing heterogenous resources in Java ap-
plications.

• It presents a scalable management architecture so that application management can
be distributed across different machines.

• It can be integrated with other management solutions using its well-defined APIs.

Figure 3.2 shows the JMX architecture and the relationship between its components [83].
This architecture is characterized by three levels: Instrumentation level, Agent level, and
Distributed Services level.

The instrumentation level provides mechanism to make a resource manageable. A
resource can be anything like an application, a component, a user, a database and so
forth. Resource instrumentation is enabled by means of objects called Managed Beans
or MBeans. These are simple Java objects that interact with the underlying resources
and expose interfaces to make them manageable through the agent level. Several design
patterns have been proposed, for example in [38, 53], for effectively using MBeans and

21



Figure 3.2: JMX Architecture

designing the interaction between MBeans and the real system resources. Moreover, this
level offers a notification mechanism that allows MBeans to generate and propagate events
to other components. With this mechanism, it is possible to construct a publish-subscribe
model to listen for and handle events.

The agent level provides facilities to control and manage resources. It is build upon
the instrumentation level and includes a server object called MBeanServer. All MBean
objects defined in the instrumentation level must be registered to MBeanServer to enable
resource management, and all access to them is provided through the MBeanServer. This
mechanism allows different management applications to monitor and tune a system. It
also provides a remote access API that allows the distributed and remote management of
resources.

The distributed services level provides the interfaces for implementing JMX managers.

22



This level defines management interfaces and components that can operate on agents or
hierarchies of agents.

JMX provides a portable and scalable mechanism to manage different resources, but
it only provides means for sensing and effecting purposes. It is not concerned with the
self-management logic that correlates sensors with effector. There are JMX Management
Console applications available in the market that are used by administrators to observe
the system status and to invoke operations on the system. In this model, the control loop
is created manually by the administrator. The StarMX framework makes self-management
possible by enabling different JMX features and integrating them with other techniques
to build control loops. StarMX interacts with JMX through its agent level facilities and
provides the following services via a simple configuration. These services are elaborated in
more detail in the following chapters.

• It provides a variety of mechanisms for accessing MBeanServers to interact with
different types of MBean objects as sensors/effectors, addressing FR3

• It enables using MonitorMBeans as the monitoring component of control loops or for
dispatching notification, addressing FR4

• It utilizes JMX Notifications for activating control loops and event dispatching, ad-
dressing FR4 and FR6

• It supports remote access to MBeanServers, which enables remote application man-
agement, addressing NFR2

3.3.2 Policy Engines

As discussed in Chapter 2, there are several research projects that encourage using policies
for describing adaptation logic. Reusable policy/rule engines, which parse and execute
policies, facilitate using this technique for defining self-managing requirements and ad-
dressing self-* properties. Currently, there are many commercial and open-source policy
engines used in academic and industrial projects. Apache Imperius [4] is an open source
policy engine, which provides an object-oriented implementation of the CIM-Simplified
Policy Language (CIM-SPL) [24]. CIM-SPL is a policy language designed for managing
computing resources using Common Information Model constructs. JBoss Drools [46] is
also a well-known open source rule engine, which provides a unified and integrated platform
for rules, workflow, and event processing.

23



Regarding the diversity of policy languages and engines, StarMX is equipped with
the capability to collaborate with different policy engines in an abstract manner via an
adapter interface. This mechanism eliminates the dependency on any particular policy
engine. It also allows the developer to choose his/her favorite engine and integrate it
with the framework. The details of this feature will be explained in the next chapter. It
should be noted that the framework is not limited to policies for defining management or
adaptation logic: using Java classes is supported for this purpose as well.

3.4 High-level Architecture

A global view of the framework and its interactions with external entities like JMX and
policy engines was presented in the previous section. Next, we look at the internal archi-
tecture of the framework from a high-level viewpoint. As depicted in Figure 3.3, it consists
of two main elements: Execution Engine and a set of Services.

Execution Engine

Services

Lookup

Execution Chain

Process . . . . . .

Proxy 
Generation Activation Data 

Repository Caching Data 
Gathering Logging

Process

Execution Chain

Process . . . Process

Figure 3.3: StarMX High-level Static Architecture

The Execution Engine module is the core of the system that automates self-managing
operations. The two key components of the execution engine are Execution Chain and
Process. Execution chains represent management control loops and can be considered as
autonomic managers. They address all of our requirements regarding control loops (FR1
and FR2 ). As shown in the figure, the system may be configured to have several execution

24



chains such that each one deals with a different self-managing concern. For example, it
is reasonable to have one execution chain for each self-* property (e.g. self-optimizing)
or one execution chain for each important manageable resource, or a combination of both
approaches. Different functions of the control loop are defined by means of process compo-
nents. They contain management logic and can be specified by policies. They use sensors
and effectors to perform their jobs. This approach separates management logic from the
business logic, thereby supporting the separation-of-concerns principle (FR7 ).

The role of execution engine is to regulate the control loops and to activate them based
on their configured properties to deal with the runtime situations. Framework configuration
is defined in an XML file containing the information on processes, policies, and control loops
used by the execution engine at runtime. The behavior of execution engine demonstrates
the inversion-of-control property of the framework. Processes that define management
logic are framework slots provided by the developer.

The set of services provided in the service layer is designed to address our other re-
quirements described in Section 3.2, and to provide some nice-to-have facilities. Of course
this set can be enriched by providing more services in the future. However, these services
are utilized by the execution engine and are available to the self-managing application
developer through a set of APIs.

• Lookup: Enables access to sensor/effector components within control loops (FR3 )

• Proxy Generation: Creates a proxy for an MBean type sensor/effector, so as to
represent it as a simple object

• Activation: Provides mechanisms for activating control loops at appropriate times
(FR4 )

• Data Repository : Provides facilities for control loops to store data for keeping track
of the history of observations and decisions, and to share data with other control
loops (FR5 and FR6 )

• Caching : Improves the speed of access to sensor/effector components by a caching
mechanism (NFR1 )

• Data Gathering : Collects some statistical data about the runtime behavior of the
control loops

• Logging : Keeps the records of different events happened in the framework at runtime,
in a log file

25



3.5 Summary

This chapter presented an overview of the proposed software framework for supporting
dynamic self-management. The framework is designed based on a set of requirements to
facilitate developing control loops and autonomic managers. It is based on standards and
supports the separation-of-concerns principle to enable separation of adaptation from the
application logic. The framework permits the developer to use JMX and policies to create
a management environment. The high-level architecture of the framework includes an
execution engine, which runs and governs control loops, and a set of services to support
the execution engine runtime functions. More details about the architectural components,
provided services, and the framework runtime behavior are presented in the next chapter.

26



Chapter 4

Framework Architecture

This chapter explains the StarMX architecture, including its components and their re-
lationships and runtime interactions. Several design patterns like proxy and chain-of-
responsibility have been used to facilitate the interaction between different components.
The first section discusses the execution engine modules and its internal design. The next
section describes the services that support the framework behavior, and the last section
shows how the framework behaves at runtime and enables dynamic adaptation.

4.1 Execution Engine

Execution Engine is the core module of the framework that automates self-managing op-
erations. It executes the management logic defined by the application developer to adapt
the system with its current situation using the services provided in the service layer. In
other words, it enables the control loops to perform their jobs. In order to address differ-
ent aspects of self-management, several instances of control loops might be needed. For
example, one control loop is designed to address self-configuring, and another is designed
to address self-healing. In another approach, one control loop is designed to address all
self-* properties for each individual important resource. In this framework, each instance
of the control loop is represented by one execution chain component, and execution engine
is able to handle several instances of these components at runtime. In the following, we
explore the architecture of execution chains.

27



4.1.1 Execution Chain Architecture

Figure 4.1 displays the architecture of an execution chain. This architecture model aims
to provide a flexible approach for the developer to construct a control loop with access to
the sensors and effectors. The wide arrows in the picture show the direction of interactions
and the black thin arrows reflect the flow of control. We describe this architectural model
in terms of its components, connections, and semantic.

Execution Chain (Autonomic Manager)

Process 1 Process 2 Process N

Anchor Objects (Sensors, Effectors, Helper objects...)

Managed System

Anchor 
Object 1

Anchor 
Object 2

Anchor 
Object M

. . .

Activation 
(Timer/
Event)

. . .

Resource 1 Resource 2 Resource K. . .

Figure 4.1: Execution Chain Architecture

Components

The components involved in this design include: one execution chain, a set of processes, a
set of anchor objects, and an activation service.

• Execution chain: This is the core component of the model and represents a control
loop.

28



• Process: This is an executable entity and the building block of execution chains.
Each process may perform a single function or a group of functions of the control
loop, such as monitoring, analyzing, planning, and executing. Each execution chain
contains a sequence of one or more processes.

• Anchor object: Each process needs a collection of anchor objects to perform its
task. These objects can either be management endpoints (sensors and effectors) of
the underlying resources or helper objects that provide some services. The required
set of anchor objects for each process and their lookup information are defined in the
framework configuration file, described in the next chapter. Each anchor object can
be used by different processes. Hence, these objects can be accessed concurrently by
multiple processes. To improve performance, the framework does not provide any
concurrency control mechanism for these objects, and it is left to the developer to
handle this issue properly.

• Activation service: Each execution chain is associated with an activation service,
which enables its execution at appropriate times. It can be a timer-based or an
event-based service.

Note that managed system resources are not considered as components of this archi-
tecture, since they are visible only to the anchor objects, and not to the processes.

Connections

The connections among the components of this model are:

• Execution chain - Process: The execution chain maintains an ordered list of its
processes through an aggregation relationship. The design of StarMX allows reusing
one process in multiple execution chains. For example, if the process performs a
reusable planning logic, it can be used by several execution chains.

• Process - Process: The processes in an execution chain are connected based on
the Chain-of-Responsibility design pattern [28]. This pattern allows execution of a
sequence of process which is useful for realizing the MAPE loop functions, since they
should be performed in order.

• Process - Anchor object: Each process relies on its anchor objects’ interfaces
for interaction with them. There is no interaction between an anchor object and a
process.

29



Other facilities have been designed to support data communication among processes.
Processes can exchange data with each other through provided data repositories or shared
memories. These mechanisms can also be used to exchange data based on a Blackboard
architectural style. Moreover, there is no direct interaction or connection between two
execution chains, but there are means that enable building a publish-subscribe model among
execution chains to allow the broadcasting and handling of an event. A more detailed
discussion on these techniques is available in Section 4.2.

Semantics

At runtime, an execution chain is activated by an event or at fixed time intervals. Upon
activation, the involved processes are executed in order. The required set of anchor objects
for each process is prepared and injected into the process right before its executing. During
execution, a process uses its anchor objects to send or receive data to/from the managed
system. The execution is terminated once the last process finishes its execution.

4.1.2 Realization Scenarios

This section presents how a developer can realize different components of execution engine,
including: anchor objects, processes, execution chain, and activation service, to construct
a control loop.

Anchor objects are used only by processes, and their interfaces are transparent to the
framework itself. Therefore, StarMX does not enforce any constraint on the design or
implementation of these objects. For example, they do not need to implement a particular
interface. Instead, StarMX supports standard forms of access to these objects, and an
anchor object can be presented by the following techniques:

• MBean or MXBean: These are application management interfaces in the JMX archi-
tecture. The application developer may implement application-specific sensors and
effectors through a set of MBeans, or use the MBeans provided by other frameworks
or the Java EE application server. MXBeans are special types of MBeans offered by
JMX used to manage different JVM resources like CPU, threads, and memory.

• JavaBean: An anchor object can also be a simple Java object that provides some
utility services to the process or performs management operations. It can be in-
stantiated either directly by the execution engine or by a factory class, provided by

30



the developer, using the Factory-Method [28] design pattern. The factory method
approach allows the developer to prepare a management interface around any kind
of resource and present it to the framework as a simple object. This technique is
useful to integrate StarMX with legacy systems, and it works as an alternative to
JMX. For example, the developer can create a factory that returns an object that
interacts with a resource using Java Native Interfaces (JNI).

The internal logic of a process is also defined by the developer, and it is totally trans-
parent to the framework. There are two approaches for defining a process: descriptively
using a policy language, or programmatically using the Java language. Using a policy lan-
guage to defines the self-* requirements in form of condition-action policies is a common
technique. The choice of policy languages is left to the developer, and StarMX is capable
of working with external policy engines. It employs an Adapter design pattern [28] to
abstract the interaction with different engines. Figure 4.2 illustrates the static relation-
ships among execution chain, process, and external policy engine components. As shown
in the picture, an implementation of PolicyAdapter must be provided by the developer
to enable this interaction. Currently, StarMX is equipped with adapters for the Imperius
framework [4] and the IBM ABLE rule engine [40]. The user can also provide an adapter
class for other policy engines.

+init()
+execute()
+destroy()

«interface»
Process

ConcreteJavaProcess PolicyProcess

+loadPolicy()
+executePolicy()
+unloadPolicy()

«interface»
PolicyAdapter

Policy File

ConcretePolicyAdapter

ExternalPolicyEngine

+init()
+execute()
+destroy()
+enable()
+disable()

ExecutionChain

*

Figure 4.2: Process Classes and Integration with External Policy Engines

The implementation of an adapter class is simple: it basically needs to forward method

31



calls to the appropriate methods of the policy engine. The loadPolicy method is invoked
only once by the framework for each policy at startup. It is responsible for performing ini-
tialization tasks like compiling and parsing the policy script. The executePolicy method is
invoked at runtime whenever the corresponding execution chain is activated. This method
should call the related policy engine method in turn. The unloadPolicy method is called
at the shutdown phase to perform clean up tasks, if needed.

Researchers argue about the efficiency of policies for addressing the self-managing re-
quirements. Huebscher et al. refer to the conflicts that may occur among policies at
runtime [39]. The limitations of policy languages with respect to their constructs and
syntax also impose constraints on the specification of the management logic. For example,
it is hard to find a policy language that supports for-loop or nested if-else conditions, as
needed for implementing the self-managing requirements. Moreover, although describing
management logic as policies is fairly simple, it may become a tedious task in complex
systems, and a high level of expertise is required to fine-tune the policies [15].

For the above reasons, StarMX also allows implementing a process using the Java
language to benefit from all features of the programming language in the specification
of the management requirements. In this case, the management logic is developed by
implementing the org.starmx.core.Process interface, shown in Figure 4.2. The methods
in this interface are self-descriptive, and they handle the process life cycle. The init and
destroy methods are invoked to provide a chance for initialization and cleanup activities at
the startup and shutdown phases respectively, and execute is called whenever the process
must be executed as a result of activating the execution chain. The management logic,
which contains monitoring, analyzing, planning, and executing functions, is implemented
in this method.

Furthermore, the composition of processes in execution chains to build control loops
can be either static or dynamic. In static mode, the chain of processes is defined in the
configuration file, while in dynamic mode, several execution chains may form a bigger
control loop on-the-fly. In this case, the execution of a process may result in the activation
of another execution chain by sending an event. More details on this model will be provided
in Section 4.2 in introducing the activation service. Activation service properties such as
the time intervals or the event that activates the execution chain are also described in the
configuration file. Configuring the framework is explained in Section 5.2.

32



Realizing IBM’s architecture

The execution chain architecture (Figure 4.1) provides a flexible mechanism to design a
control loop (autonomic manager), as presented by IBM (Figure 4.3).

Figure 4.3: Autonomic Manager Architecture presented by IBM

• In StarMX, the control loop can be created by a single process or an arbitrary number
of chained processes, and they map very well to the four MAPE loop entities. Our
framework provides flexibility in the design of control loops based on the complexity
of the problem. For example, in a simple scenario, all four functions can be merged
into one process presented as a policy; or, in a complex case, analyzing and planning
can be split into several processes.

• StarMX promotes the notion of anchor objects which are more generic than sensors
and effectors. An anchor object may provide either or both sensing and effecting
functions or some utility services.

• The relationship between processes and anchor objects is flexible and each process
can use several different anchor objects, whereas in IBM’s architecture, there is no
interaction between the analyzing and planning modules and the sensors and effec-
tors.

33



4.2 Runtime Services

A set of services are provided by internal framework components to support the runtime
operation of the execution engine, and they are helpful in enabling self-managing behavior
in target systems (Figure 3.3). Some of these services are used by the framework internally
and some are available to the user via the framework external interfaces and APIs. This
section describes the main purpose of each service and how it contributes to the framework
behavior.

Lookup

This service provides mechanisms to access the anchor objects of the processes. It is
responsible for finding and preparing an anchor object instance based on its type. In
the case of MBean, it supports several approaches for accessing the MBeanServers and
locating the specified MBean object, such as JNDI lookup or JMX Remote API. In the
case of JavaBean, it either instantiates the object by itself or contacts a factory to perform
this task. This service is invoked by the execution chain prior to the execution of each
process to locate the required set of anchor objects for that process.

Proxy Generation

The objective of this service is to create a proxy object [28] dynamically when the located
anchor object points to an MBean. The purpose of creating a proxy is to represent the
MBean as a simple Java object with an interface. The proxy contacts the MBean through
the MBeanServer and hides all internal details related to the MBean method calls. The
proxy generation happens at lookup time.

Activation

This service supports different techniques for triggering execution chains for execution.
The two enabled methods are:

• Timer-based : This is a polling model, which allows the system to continuously check
its internal state and to take appropriate actions in response. In this approach, the
execution chain is triggered at fixed time intervals (e.g. every 10 seconds).

34



• Event-based : This is a push model, which activates the adaptation process when
a certain event happens. In this case, the execution chain subscribes to receive
a particular event. The event can be published by a component in the managed
system. By receiving the event, the execution chain will be executed. The JMX
notification architecture is utilized for this purpose. Based on the JMX specification,
MBeans can create a notification object as an event, customize its properties, and
send it. Several listener objects can register to receive the event. In our framework,
an execution chain registers itself to handle the event.

The framework provides detailed configuration properties for the mentioned activation
mechanisms, as discussed in Section 5.2. Regarding the event-based technique, there are
more facilities that can be utilized by the developer. The occurrence of an event can also
lead to the activation of more than one execution chain. For example, several execution
chains can register themselves to be activated by the same event. Moreover, the framework
offers two approaches for receiving and handling an event by an execution chain:

• Synchronous : This approach blocks the event publisher until all processes in the
activated execution chain are executed. This mechanism enables the dynamic con-
struction of control loops through sending an event from a process and handling the
event synchronously by another execution chain. As shown in Figure 4.4, during the
execution of P12 in ExecutionChain1, an event is sent, which results in the activation
of ExecutionChain2. At this moment, P12 is blocked until the execution of Execu-
tionChain2 is completed. This results in creating a control loop containing P11, P12,
P21, P22, and P13 processes. Of course, depending on the moment that the event
is raised, P21 and P22 may be executed right at the beginning or in the middle of
P12’s execution.

• Asynchronous : This technique allows executing the activated execution chain in a
separate thread, and therefore not blocking the sender. In this case, the second
execution chain is executed concurrently with the first execution chain.

Data Repository

The objective of this service is to enable processes, to store data for future usages or to
exchange data with other processes. The data may include the history of observations
or decisions. This service also enables data communication among execution chains and
processes. This facility is comparable to the knowledge part of the autonomic managers (in

35



Execution Chain 1

P11 P12 P13

Execution Chain 2

P21 P22

Sending event E / 
Handling E synchronously Finish execution of P22

Timer or Event

Figure 4.4: Dynamic Control Loop Construction: An Example

Figure 4.3). The data repositories are currently provided through the working memories
with different scopes. The framework offers three types of repositories to address different
communication needs among processes. These scopes are in alignment with the available
memory scopes in the J2EE architecture in the web tier. Furthermore, the design of these
repositories enables implementing them as a persistent data store like a file or database.

• StarMXScope: A global scope shared among all processes. Any information stored
in this scope is always accessible to all processes. It is created when the framework is
initialized and is destroyed when the framework shuts down. This scope is similar to
the ServletContext memory in J2EE applications, which is a shared memory among
all web tier components.

• PolicyScope: A private scope related to a policy-based process. It is created when
the process is deployed and is destroyed when the process is undeployed. It allows
creating stateful policies. Note that Java-based processes are stateful objects and
they do not need a separate scope to store runtime data. This scope corresponds
to the HttpSession memory in J2EE applications, which contains the user’s session
data.

• ExecutionScope: A scope associated with an active instance of the execution chain.

36



Any information in this scope is only accessible by the subsequent processes in the
chain. It is created at the activation time of an execution chain and is destroyed at
the end of the execution. A nested execution chain (an execution chain activated by
another chain, see Figure 4.4) uses the existing ExecutionScope associated with its
parent. This scope resembles the facility provided by the ServletRequest object in
the J2EE web-based system, which allows a web component to send some data to
the forwarded Servlet or JSP.

Another interesting feature of the designed repositories is the support for realizing a
Blackboard architectural style through subscribing different listeners to the repository. Such
listeners are notified of data manipulation operations like addition, update, or removal.

In addition, this facility can be used by the developer to resolve conflicts between
different execution chains. The concurrent execution of multiple execution chains may
result in some conflicts as they may contradict each other in the adaptation decisions.
Processes can use data repositories to negotiate with each other by reading and writing
data into them, and the can proceed based on the satisfaction of some specific conditions
in the repository.

Caching

This service aims to improve the performance of the lookup service by holding references
to previously accessed anchor objects. It saves proxy generation or object instantiation
time in the next access. This service is able to detect the registration and deregistration
of MBeans and to invalidate the cache at appropriate times.

Data Gathering

This facility collects statistical data about the execution of each process and execution
chain. This data currently includes execution count, failure count, and average execution
time, but the service can be extended, using its API, to gather more information. The
data will be made available to the processes, helping them to adjust their behavior. The
collected data can also be logged into a file for administrative use.

Logging

The purpose of this mechanism is to provide a configurable logging facility to record differ-
ent framework events into a log file. The log file can be analyzed by the administrator later.

37



This service is designed based on the Log4J [5] framework. Log4j is a very popular logging
framework used in many applications. It allows creating objects, called loggers, which log
the messages to output streams. Each log message has a log-level attribute (e.g. DEBUG,
INFO, WARNING, ERROR, etc.), and the logger can be configured to only log messages
with a log-level equal to or higher than a particular log-level. Each logger is associated
with objects, called appenders, which physically write messages to output streams. Each
appender writes the log messages to a different output stream (e.g. console or log file).
Hence, when a message is going to be logged by a logger, it is sent to all associated ap-
penders to be written to all destinations. Moreover, the layout and format of log messages
can be customized to include properties like timestamp, thread name, and logger name.

4.3 Runtime Behavior

The runtime behavior of the framework is divided into three phases: startup, operation,
and shut down. At startup, StarMX prepares the environment for the optimized operation
of the execution chains. All services are initialized, and processes and execution chains
are deployed based on specified properties in the configuration file. In this phase, each
execution chain is deployed such that it is ready to be activated at the appropriate times.
This is done by scheduling a timer or subscribing for an event (or a class of events).

Once the framework has successfully started, it is ready to operate. In this phase, the
execution chains are invoked by their own activators for execution. Upon activation of an
execution chain, all processes in the execution chain are invoked in order. For each process,
first, its required set of anchor objects are prepared through the lookup, proxy generation,
and caching services. Next, the process is called with the anchor objects, provided as
arguments. The process invokes the anchor objects’ methods to obtain data from or send
commands to the application. The sequence diagram, depicted in Figure 4.5, displays
the execution steps at runtime, described above. In the diagram, the green boxes are
framework classes or interfaces, and the yellow boxes are non-framework objects developed
by the user.

If a policy language is used to define a process, the related policy engine is invoked
through its adapter class to execute the policy with the provided anchor objects. A
policy-based process is a specialized class of process, which is internally represented by
a PolicyProcess object. As illustrated in Figure 4.2, it is a concrete implementation of
the Process interface, which interacts with a policy engine through its adapter. Figure 4.6
shows the the execution sequence when a policy-based process is involved.

38



Execution Module :ExecutionChain a Process

execute

execute

Anchor Object

* aMethod

Execution Module : Execution Chain PolicyProcess

execute

execute

a PolicyAdapter

executePolicy

Policy Engine Anchor Object

execute method

* aMethod

lookupAnchorObjects
Loop

Figure 4.5: Process Execution Sequence Diagram

Execution Module :ExecutionChain a Process

execute

execute

Anchor Object

* aMethod

Execution Module : Execution Chain PolicyProcess

execute

execute

a PolicyAdapter

executePolicy

Policy Engine Anchor Object

execute method

* aMethod

lookupAnchorObjects
Loop

Figure 4.6: Policy-based Process Execution Steps

39



Furthermore, when the anchor object is an MBean, it is represented by a proxy to be
used by the processes. Figure 4.7 shows the sequence of invocations that will happen as
the result of calling an MBean proxy from a process. In the diagram, the MBean related
classes are shown in yellow and the managed resource is displayed in blue.

MBean Proxy MBeanServer MBean A resource

a method

JMX API

a method

call

Figure 4.7: MBean Type Anchor Object Invocation From a Process

During the execution, a process can also access the provided memory scopes (data
repositories) to read or store data, or to share it with other processes. Access to the
memory scopes is provided via the ExecutionContext interface. This is a framework object
that is created each time an execution chain is activated, and it is passed to all processes
in the chain. As illustrated in Figure 4.8, it provides access to different memory scopes,
and to the information of the event that has activated the execution chain. It also allows
a process to stop the execution of the chain by calling the noExecuteNext method. As
the result of invoking this method, the subsequent processes in the chain will not be
executed. This feature is useful, if a process finds a situation in the managed system that
the control loop cannot deal with, and it is better to stop the execution early. Note that
while ExecutionContext is available to Java-based processes programmatically, a policy
engine adapter should pass it to the policy engine as an anchor object to make it available
to a policy. In this case, the policy script can use the ExecutionContext object like any
other anchor object.

40



Finally, at the shut down phase, the framework undeploys the execution chains and all
processes and stops working.

public interface ExecutionContext {

public TimerEvent getTimerEvent();
public Notification getNotification();

public Scope getStarMXScope();
public Scope getPolicyScope();
public Scope getExecutionScope();

public void noExecuteNext();
...

}

The StarMX framework is designed to serve the best performance at runtime by re-
ducing the amount of time spent in the framework during execution. However, the total
execution time of the control loops can be affected by other external factors such as the time
consumed in the anchor objects or in the external policy engine. Section 6.3.3 discusses
this issue in more details.

Finally, at the shut down phase, the framework undeploys the execution chains and all
processes and stops working.

4.4 Summary

This chapter describes the architectural details of the framework and its novel features. In
brief, it allows to create closed control loops in form of execution chains which compose
several processes. Each process deals with part of self-managing issues and interact with
the managed system through a set of anchor objects. Several services are provided to
support this behavior including: lookup, proxy generation, activation, data repository,
caching, data gathering, and logging. At runtime, upon arrival of an event or based on a
scheduled timer, the processes of an execution chain are executed in order and each one
is provided with the required set of anchor objects. The user is responsible for developing
processes, their correlation, and their required anchor objects to construct control loops
and enable self-managing behavior. Next chapter will explain several models for application
management and how to realize these models using StarMX.

36

Figure 4.8: ExecutionContext Interface

The StarMX framework is designed to serve the best performance at runtime by re-
ducing the amount of time spent in the framework during execution. However, the total
execution time of the control loops can be affected by other external factors such as the time
consumed in the anchor objects or in the external policy engine. Section 6.3.3 discusses
this issue in more details.

Finally, at the shut down phase, the framework undeploys the execution chains and all
processes and stops working.

4.4 Summary

This chapter describes the architectural details of the framework and its novel features.
In brief, it allows to create closed control loops in the form of execution chains, which
compose several processes. Each process deals with part of the self-managing issues and
interacts with the managed system through a set of anchor objects. Several services are
provided to support this behavior including: lookup, proxy generation, activation, data
repository, caching, data gathering, and logging. At runtime, upon arrival of an event
or based on a scheduled timer, the processes of an execution chain are executed in order
and each one is provided with the required set of anchor objects. The user is responsible
for developing processes, their correlation, and their required anchor objects to construct
control loops and enable self-managing behavior. The next chapter will explain several
models for application management and how to realize these models using StarMX.

41



Chapter 5

Developing Self-Managing
Application

Developing an application with self-managing capabilities, or converting a legacy system to
an autonomic system is challenging and should be carried out according to a well-defined
process. Different approaches and models have been proposed by researchers to address
self-* properties in computing systems (e.g. [41, 52, 77, 84]). This chapter describes how
a self-managing application can be developed using the proposed framework. The first
section outlines several usage scenarios for building adaptive and self-managing systems
and shows how they can be realized by this framework. The next section presents the
steps required to be followed for building such systems, and the last section explains the
framework configuration properties.

5.1 Development Steps

Creating self-managing software systems, regardless of the techniques or models that are
used for dynamic problem detection and resolution, requires a systematic approach that
helps the developer to proceed step by step to achieve the final result. In an abstract
comparison, it is similar to a software development methodology or process, which starts
from the requirement specification and ends at deployment. Based on our experience in
enabling systems with adaptation behavior [74, 75], we defined a five-step process to build
self-managing systems using StarMX. Figure 5.1 demonstrates these steps and their input
and output artifacts. Arrows show the flow of data and are annotated with the related
artifacts.

42



1
Specifying 

Self-Managing 
Requirements

2
Providing 

Manageability 
Endpoints

3
Developing 

Management 
Logic  

4
Configuring 

StarMX

5
Deployment

Sensor / 
Effector

Requirement 
Specification / Model

starmx.xml

StarMX and target 
application executables + 

other required libraries

SLA

Management Logic 
(process class, 

policy...)

Self-Managing 
System

Target application

Figure 5.1: Required Steps to Develop a Self-Managing Software System

• Step1: Specifying Self-Managing Requirements - Self-managing solutions mostly
focus on non-functional and QoS (Quality of Service) requirements. Therefore, these
solutions deal with performance, security, reliability or other quality factors. These
requirements are also referred to as self-* properties as discussed in [76]. The goal of
this step is to clearly specify or model these requirements and the expected objectives
for the target system.

– Inputs : Service Level Agreement (SLA), which is decomposed into Service Level
Objectives (SLO). Other non-functional requirements can also be considered as
the input to this phase.

– Outputs : Self-managing requirement specification

The way that these requirements should be specified or modeled is an open research
area and is not within the scope of this work. For example, goal-oriented modeling
is one of the techniques for engineering adaptation requirements, cited by different
sources [54, 64, 72]. Moreover, the StarMX framework does not impose any constraint
on working with any aspect of self-managing properties.

• Step1: Providing Manageability Endpoints - Manageability endpoints (sensors
and effectors) are the gateways for interfacing with a resource for management pur-

43



poses. Based on the self-managing requirements specified before and the resources
designated to be managed, the required set of sensors and effectors are identified.
These objects should be designed and instrumented into the target application in
this phase. As discussed earlier, these can de designed as JMX MBeans or as simple
Java objects.

– Inputs : Self-managing requirement specification and the target system

– Outputs : A set of sensors and effectors

As discussed in Chapter 2, it is also possible to use Web-Services as management
interfaces of a system. Section 5.1.1 shows how this can be achieved using the StarMX
framework.

• Step3: Developing Management Logic - This is the core part of the process for
building a self-managing system. To accomplish this part, an adaptation solution
must be designed, for example based on the techniques discussed in Chapter 2. The
management logic is developed as a set of Java-based processes, policies, and anchor
objects that form control loops. We elaborate the design and implementation of three
approaches as examples, namely: Policy-based adaptation, GAAM [77], and layered
adaptation [52], in Section 5.1.1.

– Inputs : Self-managing requirement specification and the set of sensors and ef-
fectors

– Outputs : Developed management logic as a set of policies, Java-based process
classes, and anchor objects

• Step4: Configuring StarMX - The next step is to define the construction of
control loops and their properties for the framework. StarMX uses an XML config-
uration file containing information of the anchor objects, processes, and execution
chains. For each anchor object, its lookup information is specified, and if it is an
MBean, information for accessing the associated MBeanServer is also defined. For
each process, its type information and the needed anchor objects are defined, and for
an execution chain, the order of its processes along with the activation mechanism
are declared. More information about this topic is presented in Section 5.2.

– Inputs : The set of sensors and effectors, policies, Java-based processes, and
anchor objects

– Outputs : Framework configuration file (starmx.xml)

44



• Step5: Deployment - The last step is to integrate the framework with the target
system, deploy it, and test whether the created self-managing system performs as
what is expected.

– Inputs : The StarMX and target system executable, other required libraries or
frameworks (e.g. policy engine), and the outputs of step 3 and step 4

– Outputs : Self-managing system

There are two deployment options: local and remote. In local deployment, StarMX is
deployed on the same server and the same JVM that the target system executes on.
It must be started and shut down properly (by the target system). The best practise
to start and shut down the framework is to do so at the application startup and shut
down stages. In remote deployment, StarMX is deployed on a different server and
started as a separate application that manages the target system. This deployment
mode is enabled using JMX features for remote access to the MBeans.

Selecting the appropriate deployment option in a real environment is a trade-off
among the performance overhead of each approach, ease of deployment, and other
domain-specific concerns. For example, in local mode, the framework consumes tar-
get system resources (e.g. CPU and memory), while in remote mode, only the sensing
and effecting operations use the system resources. This is because in remote mode,
the MBeans are collocated with the application objects in the same JVM. Moreover,
remote access to the MBeans is not as fast as local access, and is therefore not a
good approach for time-sensitive adaptations. On the other hand, in remote deploy-
ment, one running instance of StarMX can be used to manage several systems and
distributed resources by proper configuration of the framework.

5.1.1 Sample Scenarios

This section describes several scenarios where StarMX can be utilized to address self-
managing concerns. They are selected from the solutions discussed in the literature to
reveal how different capabilities of the framework are used to enable autonomic properties.
Other approaches discussed in Chapter 2 are also possible candidates for this section.

Policy-based Model

Using action policies is one of the simple models to enable self-management. Each pol-
icy takes an action if a condition is met. This mechanism creates a closed control loop

45



consisting of monitoring and executing functions. In this approach, policies are defined in
separate files, and they are introduced to the framework (in the configuration file) as sepa-
rate processes that contribute to the control loop. Since the policies are actually executed
by a policy engine, an adapter class should also be created for that engine by implement-
ing the PolicyAdapter interface to delegate the execution of a policy to the engine (See
Section 4.1.2).

Moreover, policies can be used for different control loop activities like monitoring,
analyzing, planning, and executing. For example, we can have monitoring policies whose
action is to send an event when a particular situation is observed. In this case, a group
of policies are chained together to form the control loop (implemented as the processes
of an execution chain) such that each policy is responsible for one or more aspects of the
management.

Goal-Attribute-Action Model

GAAM is presented in [77], and we provided a brief overview of this approach in Section 2.4.
Goals are system objectives that should always be satisfied. More precisely, each goal is
defined based on some conditions and some suggested actions. For example, a performance
goal states that the response time must be lower than 1 second; and if it is greater than 1
second, one of the following actions should be performed: tuning parameter A, changing
parameter B, switching from algorithm X to Y, disabling service C, etc. To avoid conflicts
among the goals and to achieve the best result, a voter module exists in the system that
analyzes the decisions made by the goals. The voter coordinates the decision making
process and generates the action plan to be executed.

This model can be implemented in different ways using StarMX features. The follow-
ing describes one possible approach which is used in the development of our case study
(described in the next chapter). In this design, each goal is implemented as a Java objects
with an active/inactive state, which generates a list of preferred actions upon request.
Voter is a StarMX process which traverses a list of goal objects, collects the preferred
actions of activated goals, and decides which actions must be executed and in which order.
The internal algorithm of the voter could be anything and is not the matter of discussion
here. Goal evaluation is performed by means of policies, checking system attributes, and
activating/deactivating the goal.

Several execution chains (control loops) are defined to be executed at different time
intervals. Each execution chain is comprised of a set of goal evaluation policies, which
perform both monitoring and analyzing tasks, one voting process for deciding and plan-

46



ning, and one executing process to execute the voter’s result. Each policy evaluates some
conditions using a set of sensors, and activates or deactivates one specific goal. The goal
object and sensors are the anchor objects of the policy. At runtime, the policies first deter-
mine the statuse of the goals, then the voting process is executed to produce the preferred
action set, and finally the executing process translates the action plan to some method
invocations on the effector objects.

Multi-layered Management Model

A multi-layered model for managing systems is presented in [52]. In this model, system
management activities are categorized in a hierarchy of layers. Lower layers deal with
management details and provide fast responses to events, and higher layers perform further
analysis and provide solutions to more complicated situations. Each layer first tries to
resolve the problem based on its own knowledge, and sends an event to the next higher
layer if it fails to resolve the problem. For example, a lower layer may try to resolve
a performance problem by tuning system parameters. However, parameter tuning may
prove ineffective in addressing the problem as time goes on. To resolve this issue more
knowledge of the system components is required. Thus, the lower layer sends an event to
the higher layer to deal with the problem. This scenario will be repeated until either the
problem is resolved or a human administrator is informed.

To build this model with StarMX, the management layers of this model can be consid-
ered as different execution chains that interact with each other through the event publishing
facility and handle events asynchronously. The source of events can be a system resource
or an execution chain. The asynchronous event handling allows lower layers to respond to
other events without blocking.

Using Web-Services for Application Management

JMX MBeans are one of the well-known standards for application instrumentation. As
discussed in Section 2.1, Web Services Distributed Management (WSDM) [69] defines a
standard for managing heterogenous resources via web-services.

To enable this technique in StarMX, it is required to present a web-service as an anchor
object. It can then be used by policies or Java-based processes as a sensor or effector. An
anchor object can be a simple Java object that is either instantiated by the framework or
via a factory class. In this case, the developer can provide a factory class that reads the
web service definition from its WSDL (Web Service Definition Language) file, and creates

47



a corresponding proxy object to represent the web-service as a simple Java object with an
appropriate interface. The final step is to define the information of the factory class in the
framework configuration (see Section 5.2.3).

In the future, the framework can be extended to support web services as anchor ob-
jects through generating a proxy object for a web service based on its WSDL information
automatically, thereby eliminating the need for developing a factory class.

5.2 Framework Configuration

StarMX configuration is defined in the starmx.xml file. This is an XML language for
defining the information of anchor objects, processes, and execution chains via XML tags.
This file is read during the framework startup phase. A summary of the key configuration
items is presented in Table 5.1. A detailed discussion of these items and their attributes
is provided in the following sections. A complete example of this file is also available in
Appendix A.

Table 5.1: StarMX Configurable Items
Item XML Tag Purpose
MBeanServer mbeanserver Access point to MBeans
MBean / MXBean mbean MBean and MXBean as an anchor object
JavaBean bean Simple Java object as an anchor object
Monitor MBean monitor-mbean A monitor with an event propagation facility
Process process A policy-based or Java-based process
Execution Chain execute An execution chain
Timer timer-info Timer-based activation for an execution chain
Event notification-info Event-based activation for an execution chain

5.2.1 MBeanServers

MBeanServer’s information is used to provide access to MBeans, MXBeans, or Monitor
MBeans. The following shows the syntax for defining an MBeansServer.

<mbeanserver id=""
lookup-type="platform|jndi|jmx|find|factory" />

48



-id : A unique identifier for the MBeanServer, which is referenced by the MBeans.

-lookup-type: The technique used to create a connection to the MBeanServer. Depending
on the specified value, more information should be declared.

Example: Creating an MBeanServer connection to the MBeanServer in JBoss5
application server.

<mbeanserver id="jboss_ms" lookup-type="jmx" >
<jmx-param service-url="service:jmx:rmi://localhost

/jndi/rmi://localhost:1090/jmxconnector" />
</mbeanserver>

5.2.2 MBeans and MXBeans

MBeans and MXBeans are the application instrumentation interfaces used by the processes.
Both MBeans and MXBeans are defined by the mbean tag as shown below.

<mbean id=""
object-name=""
interface="(optional)"
mbeanserver="" />

-id : The unique identifier for the MBean, referenced by the processes as an anchor object.

-object-name: The string representation of the MBean’s ObjectName.

-interface (optional): The full class name of the MBean interface used in the proxy gen-
eration process. Note that the MBean may not implement the specified interface, but its
methods’ signatures must look like those of the interface.

-mbeanserver : The id attribute of the mbeanserver tag that the MBean is registered with.

Example:
<mbean id="runtimeMXbean" object-name="java.lang:type=Runtime" mbeanserver="ms1"

interface="java.lang.management.RuntimeMXBean"/>

<mbean id="mbean1" object-name="starmx:name=mb1,type=xyz" mbeanserver="ms2" />

49



5.2.3 JavaBeans

Beans are simple Java classes used as anchor objects for the processes. Each bean is
represented by a bean tag.

<bean id="" class="" factory-method="(optional)" />

-id : The unique identifier for the Bean, referenced by the processes as an anchor object.

-class : The full class name of the Bean. The class must have a default constructor if it is
instantiated by the framework.

-factory-method (optional): Instead of direct instantiation, it is possible to use a factory.
In this case, the class attribute is the factory class (rather than the bean class), and
this attribute is the factory method name. The factory method signature must return
an instance of the bean, and it can be either parameterless or a single-parameter method
accepting the id as input. The factory class must have a default constructor unless the
factory method is static.

5.2.4 Monitor MBeans

Monitor MBeans are special types of MBeans in JMX used to periodically observe an
attribute in one or more MBeans and to send a notification if a certain condition is met.
Their notifications are often used for the activation of execution chains. They can also be
used as anchor objects.

<monitor-mbean id=""
observed-attribute=""
granularity-period=""
object-name=""
mbeanserver="" >

<counter-monitor .../> or
<gauge-monitor .../> or
<string-monitor .../>

<observed-object .../>
...

</monitor-mbean>

50



-id : A unique identifier for the MonitorMBean.

-observed-attribute: The name of the attribute to be observed.

-granularity-period : The time interval in milliseconds to observe the attribute.

-object-name: The ObjectName of this MBean. The monitor MBean is registered by the
framework under this name in the specified MBeanServer .

-mbeanserver : The id attribute of the mbeanserver tag, which the MBean should be reg-
istered with.

Currently, three different types of monitors are provided by JMX (CounterMonitor,
GaugeMonitor, and StringMonitor). The common information of all these monitors is
defined in the monitor-mbean tag and the monitor specific attributes are declared by one of
the counter-monitor, gauge-monitor, or string-monitor tags. It is necessary to use one and
only one of these tags. The attributes of these tags correspond to the writable attributes
of their MBeans, according to the JDK and JMX documentations.

The list of objects to be observed by the monitor is defined via the observed-object tag.
Several observed-objects may be defined within the monitor-mbean. Each tag contains
an object-name attribute, which represents a single MBean or a group of MBeans (if it
is a pattern). If the ObjectName is a pattern, all available MBeans that match with the
pattern are considered for observation.

<observed-object object-name="" />

Here are some examples:

<monitor-mbean id="monitor1"
observed-attribute="size" granularity-period="1000"
mbeanserver="ms2" object-name="starmx:type=monitor,name=cm" >

<counter-monitor init-threshold="100" notify="true" modulus="5"
offset="10" difference-mode="true"/>

<observed-object object-name="starmx:type=Control,name=abc"/>
<observed-object object-name="starmx:type=Control,name=xyz"/>
<observed-object object-name="starmx:type=Control,name=def"/>

</monitor-mbean>

<monitor-mbean id="monitor2"
observed-attribute="size" granularity-period="1000"
mbeanserver="ms2" object-name="starmx:type=monitor,name=gm" >

51



<gauge-monitor high-threshold="100" low-threshold="10"
notify-high="true" notify-low="true" />

<observed-object object-name="starmx:type=Control,name=*"/>
</monitor-mbean>

5.2.5 Processes

Processes are the placeholders of management logic and are chained together to support
control loop functionalities. At execution time, they are provided with the required set of
anchor objects to perform their jobs. Each process may be used in one or more execution
chains.

<process id=""
policy-type="(optional)"
policy-file="(optional)"
javaclass="(optional)">

<object name="" ref="" />
...

</process>

-id : This is the unique identifier of the process.

-policy-type (optional): If the process is described by a policy language, this attribute shows
the policy engine that is used to execute the policy. Based on the value of this attribute,
StarMX identifies which policy adapter should be used. The value of this attribute is a
string that identifies the corresponding policy adapter class. For example, if you use the
XYZ policy engine, you may create the XYZPolicyAdapter class as well; in the configura-
tion, you should use “xyz” as the value of the policy-type attribute and define the policy
adapter class with the following property, as shown below.

<property name="starmx.policy.adapter.xyz">
mypackage.XYZPolicyAdapter

</property>

-policy-file (optional): This attribute specifies the policy file name. If the policy-type is
defined this attribute must also be declared.

52



-javaclass (optional): If the process is implemented with Java (instead of a policy language),
its class name is defined by this attribute. Therefore, either the javaclass attribute or the
policy-type and policy-file attributes should be defined .

-object (optional): The anchor objects required for this process are defined by this tag.
Each tag is related to one anchor object. The objects are chosen from the already defined
MBeans and JavaBeans. The name attribute is the local name of that object in the process
implementation. The ref attribute refers to the id of an mbean or bean element. This tag
provides a mapping between the name of an object in a process and the id of the anchor
object in the configuration.

Example:
<process id="policy1" policy-type="spl" policy-file="p1.spl">

<object name="mb1" ref="myMBean1" />
<object name="mb2" ref="myMBean2" />

</process>

<process id="sample-proc" javaclass="org.starmx.policy.SampleProcess">
<object name="mb3" ref="myMBean3" />

</process>

5.2.6 Execution Chains

The execution chain’s configuration is defined by the execute tag. It includes the list of
processes and the activation mechanism information.

<execute name="(optional)"
listener="(optional)" >

<timer-info ... /> or
<notification-info ... />

<process .../> or
<processref refid="" />
...

</execute>

-name (optional): A name for this execution chain

53



-listener (optional): The listener class name for this execution chain. The listener is invoked
at the occurrence of different events during the execution chain life cycle.

The timer-info or notification-info tags are used to define how the execution chain must
be activated.

-timer-info: This tag is used to configure the chain with a timer-based activation.

<timer-info interval=""
unit="second|minute|hour|day|week|month"
first-exec-time="HH:mm"
first-exec-delay=""

/>

-interval : The time interval between subsequent executions.

-unit : The time unit of the interval attribute.

-first-exec-time (optional): This specifies the first time that the chain should be executed.
It should be represented as HH:mm and is interpreted based on the behavior of the Java
SimpleDateFormat class.

first-exec-delay (optional): This attribute can be used instead of first-exec-time and defines
the amount of delay in seconds, before the first execution of the execution chain. Its
minimum and default value is 1 second.

-notification-info: This is used to execute the chain upon the receipt of a Notification.

<notification-info emitter-mbean=""
event-type=""
event-class=""
event-handling="synch|asynch"

/>

-emitter-mbean: The id of the mbean tag that sends the notification.

event-type (optional): The type attribute of the JMX Notification object. If specified, the
notifications are filtered by the mentioned type.

event-class (optional): The class name of the notification object, which is a subclass of
javax.management.Notification. If specified, only the notification objects with this class
(or its subclasses) will activate the chain.

54



event-handling (optional, default to “synch”): This determines whether the execution
should be synchronous or asynchronous. In synchronous mode, the notification emitter is
blocked until the chain is executed, whereas in asynchronous mode, the execution happens
in a separate thread.

The processes are defined by either the process or processref tags. The order of the process
determines their execution order at runtime.

process : As described before.

processref : If a process is used in more than one execution chain, its configuration can
be reused by defining it with a process tag out side of the execute tag, and using this tag
to reference it. The refid attribute refers to the id attribute of the process.

5.3 Summary

This chapter explains how to develop self-managing software systems using StarMX. The
steps to develop these systems includes requirement specification, application instrumenta-
tion, management logic development, framework configuration, and final result deployment.
It introduces some techniques used to build such systems and shows how these approaches
can be realized by the proposed framework. More information about the configuration of
the framework is also presented in this chapter.

55



Chapter 6

Experimental Studies

StarMX is a software framework to build self-managing systems. It provides the fundamen-
tal features to develop such systems and a runtime infrastructure to enable the dynamic
adaptation behavior in these systems. This chapter aims to provide an evaluation of this
framework. The question here is “what does evaluation exactly mean in the context of
StarMX?”.

This framework does not present any algorithm or model for developing self-managing
systems, yet it provides the elements that can be utilized by the developer to build a
model or mechanism to address self-* properties. Hence, the relationship of StarMX to a
self-managing system is similar to that of a programming language to a software program
written in that language. This relationship is also comparable to that of the J2EE infras-
tructure to J2EE-based software. Therefore, evaluation in the above question is translated
to finding an answer for the following research questions:

• Are the framework features suitable for developing a self-managing system? Are they
enough? How can they be improved?

• How well does the framework perform at runtime? What is its impact on the system
performance?

An IP telephony system is used as a case study to evaluate and analyze our framework
through a set of experiments that focus on the research questions. The answer to the
first question is subjective, and it is not quantitatively measurable. We aim to answer this
question with the best of our knowledge and experience throughout developing an adaptable
version of the case study. On the other hand, the second question is quantifiable, and we

56



address this question by testing the case study under different workloads and calculating
the framework performance.

This chapter is organized as follows. The first section describes the case study, and it
is followed by the design and implementation of our experiments in the next section. The
last section discusses the capabilities of the framework and reports obtained performance
results.

6.1 Case Study

Call Controller 2 (CC2) 1 is a Voice over IP prototype system, chosen for conducting
experiments on building self-managing systems using the StarMX framework. It is deployed
on the Mobicents [63] media server and designed based on a service oriented architecture.
It basically provides four main services:

• Regular VoIP calls : This is the most basic service provided by all VoIP software. A
caller can call a callee to establish a conversation.

• Call Forwarding : If a callee is unavailable, CC2 will try to forward the call to the
callee’s backup address, if it has one.

• VoiceMail : A caller can leave a voice message if the callee is unavailable and has no
backup address, but his/her voicemail is enabled.

• Call Blocking : If a caller is in the callee’s blacklist, the call will be blocked.

Mobicents is the first and only open source VoIP Platform certified for JSLEE 1.0 2.
JSLEE (JAIN Service Logic Execution Environment) is the Java implementation of SLEE.
In the telecommunications industry, a SLEE is a high throughput, low latency event pro-
cessing application environment. The JAIN SLEE specification 3 allows popular protocol
stacks such as SIP 4 to be plugged in as resource adapters. The extensible standard ar-
chitecture naturally accommodates integration points with enterprise applications such as
Web, CRM or SOA end points.

1http://groups.google.com/group/mobicents-public/web/jain-slee-example-call-controller-2
2http://java.sun.com/products/jain/article slee principles.html
3http://jcp.org/en/jsr/detail?id=240
4https://jain-sip.dev.java.net

57



Mobicents is deployed on JBoss [45] and brings to telecom applications a robust com-
ponent model and execution environment. It complements J2EE to enable convergence of
voice, video, and data in next generation intelligent applications. One of the main com-
ponents of JSLEE are Service Building Blocks (SBB), which are comparable to Enterprise
Java Beans (EJB) in J2EE systems. Mobicents enables the composition of different SBBs
such as call control, billing, user provisioning, administration, and presence sensitive fea-
tures. Monitoring and management of Mobicents components comes out of the box via
the SLEE standard, which is based on JMX and SNMP interfaces. In our experiments, we
utilize its JMX-based management facility to manage the CC2 system dynamically.

The architecture of the CC2 application consists of three key SBB components to
address its main functionalities:

• ForwardingSBB, which provides regular VoIP call and call forwarding services

• VoiceMailSBB, which is responsible for the voice mail service

• BlockingSBB, that enables the call blocking service

The choice of CC2 as our case study is justified by the following characteristics of CC2:
It is an open source Java system, which allows us to investigate and modify its source
code; It addresses a real business need (VoIP), rather than a hypothetical one; and It is a
large-scale system, which utilizes more features of our proposed framework for adaptation.

6.2 Experiment Design

To evaluate the framework, our experiments are divided into two phases with regard to
the research problems: i) building an adaptive version of the case study, which is capable
of tolerating the varying loads while providing its services to users, and ii) analyzing the
behavior of StarMX while the system is under different workloads.

6.2.1 Making Case Study Self-Managed

The process of making CC2 adaptive is carried out based on the development steps de-
scribed in Section 5.1. This phase of the experiment helps us assess the suitability of the
framework features and its applicability in a real context. We used this phase to to improve
the design of our framework and to find and fix the developmental bugs.

58



The case study is a relatively large system with 171K lines of code, and several new
technologies are involved in its design and implementation. Hence, it took a considerable
amount of time for us to read the system documents, understand its architecture, and
investigate its source code, before starting this phase of the experiment.

In order to make the adaptation scenarios more realistic, we modified CC2 to have
users with different privileges, while preserving all other functionalities of the system. In
the modified version, users are categorized into three classes: Gold, Silver, and Bronze,
from highest to lowest priority. The gold users are the most valuable users of the VoIP
system because they produce the most profit for the company. The Bronze users are the
least profitable users, and silver users fall between the other categories. The system owner
has to guarantee the quality of services provided to different classes of users, according to
their contracts; otherwise, the owner is required to pay them a penalty. Moreover, all users
are allowed to access all services provided by the system at all times.

Step1: Requirement Specification - The high level business objective of the new
adaptable CC2 is to maximize the company’s profit at different workload situations. To
achieve this objective, the requirement is to maintain service availability such that it always
results in the maximum benefit for the company. For this purpose, the system may decide
to block access to a service for low-priority users at certain times (e.g. very high loads),
in order to guarantee service quality for high-priority users. In other words, the service
availability and self-optimizing property are the target objectives.

Step2: Management Interface Instrumentation - Based on the specified require-
ments, we need to identify and instrument the required set of management interfaces (sen-
sors and effectors). As discussed earlier, the services in CC2 are provided by three SBB
components. Hence, we need a set of sensors and effectors to control these SBBs. The
Mobicents server allows managing SBBs through MBeans. Three MBeans (one for each
SBB) were designed to provide the average response time and throughput of each service
and to block or unblock the service for each class of users. Note that each MBean acts as
both sensor and effector.

Step3: Management Logic Development - The self-management logic of the case
study was developed based on the GAAM approach, as described in Section 5.1.1. First,
several goals have been designed to reflect the properties of different users based on the
requirements. The most high-level goal is “self-optimizing” which is decomposed into
lower-level goals that deal with more specific concerns. Each goal also defines its activation
conditions. For example, one goal is to “minimize the response time” and it is activated
“if the response time is greater than 5 seconds”. Goal evaluation was performed by means
of policies using the IBM ABLE rule engine [40]. About 30 goals, one voter, and several

59



execution policies that translate the action plans to MBean method invocations, have been
designed for this experiment.

It should be noted that the main purpose of this step was to capture a solid under-
standing of the StarMX features and facilities needed for developing self-managing systems.
GAAM was used just as a model to help us in this respect, and its details (i.e. the goals
structures, their relationships, and the voting algorithm) are not within the scope of this
research.

Step4: StarMX Configuration - The outputs of steps two and three were used to
configure the framework and to build control loops. Goal policies, voter, and execution
policies were grouped together into several execution chains based on their conflict of in-
terests and commonalities. Each policy was also associated with a set of anchor objects,
including the MBeans. The construction of execution chains was one of the most challeng-
ing parts of this experiment, since we had to take many issues into account. Some of the
challenges were: how to assign weights to goals or prioritize them, and how to elicit action
preferences for each goal with respect to the requirements. Again, these challenges are
not within the scope of this thesis, as they should be discussed in the context of GAAM
evaluation.

Step5: StarMX Deployment and Run - This is the next phase of the experiments,
and it is discussed in the next section.

Finally, the architecture of the self-managing version of the CC2 system is shown in
Figure 6.1. Several control loops are defined within StarMX, which interact with the CC2
system through the MBean-type sensors/effectors. Thick black arrows display flow of data
between control loops and MBeans and also between MBeans and SBB components. Blue
arrows denote flow of control among control loop processes.

6.2.2 Testing the Self-Managed Case Study

The second phase of the experiment is to run the system and analyze the results. This
phase intends to address two research objectives:

1. Analyzing the behavior of StarMX at runtime and its performance overhead

2. Analyzing the behavior of the adaptive CC2 and the effectiveness of GAAM approach

The first objective is concerned with the framework performance and is one of the key
parts of this research. We deployed StarMX locally with the adaptive CC2 system on the

60



JBoss Application Server

Mobicents

Call Controller 2 

Sensor/Effector Layer

Forwarding
SBB

VoiceMail
SBB

Blocking
SBB

Forwarding
MBean

VoiceMail
MBean

Blocking
MBean

StarMX Framework

IBM ABLE 
Rule Engine

S e l f - M a n a g i n g  L o g i c  ( G A A M )

Voter

Goal
Policy
Goal
Policy
Goal
Policy

Exectn
Policy

Exectn
Policy

Exectn
Policy

Figure 6.1: Self-Managing CC2 Architecture Enabled by StarMX

same server. We selected the local deployment model, since it has more impact on the
system’s overall performance due to the resource usage by StarMX and the policy engine.

For the second objective, we had to also run the non-adaptive version of the CC2
system and compare the results with that of the adaptive CC2. The results of this part of
experiment were also promising, and they revealed the effectiveness of the GAAM approach.
However, these results are not covered in this thesis as they deal with an out-of-scope
problem.

Experiment Setup

The experiment was designed to be executed with two different workloads. The results are
reported in Section 6.3.3.

61



• Low load: this workload produces a specified number of requests on behalf of dif-
ferent classes of users (gold, silver, bronze) with a pre-defined time interval between
requests. It is designed to be less than the capacity of the system for properly han-
dling workloads without crashing.

• High load: this workload is designed to be above the system capacity for handling
workloads by producing requests more frequently. The system should utilize adap-
tation logic to survive and provide its services to the users.

Furthermore, to minimize the experimental errors due to sporadic events, three repli-
cations were conducted for each workload scenario.

A powerful traffic generator should be used to conduct load testing. In this project, we
used SIPp 3.1 5, a free open source load generator for the SIP protocol.

One server and one workstation were used to run the Mobicents server and to generate
traffic respectively. The specification of the server was: Windows Server 2003 Standard x64
Edition SP2, Intel Core 2 Quad CPU Q6700 @ 2.66GHz, 8GB of RAM. The workstation
was: Windows XP professional SP3, Intel Pentium 4 CPU 3.4GHz, 2GB of RAM. These
two machines were connected via 100.0 Mbps Ethernet LAN.

6.3 Discussion and Evaluation

StarMX aims to enable software systems with autonomic capabilities by providing the
required set of services for these systems. Evaluation and assurance of autonomic systems
has been indicated as one of the major concerns and challenges of these systems [51, 62,
76]. Consequently, the evaluation of development tools and frameworks is a part of this
challenge.

To examine the presented approach and to identify its strengths and weaknesses, a set
of evaluation criteria or metrics is required. The evaluation criteria will also be helpful
for comparing similar solutions and for determining the relative advantages of different
approaches. Due to the fact that autonomic computing and self-adaptive systems is an
open research area, it still suffers from lack of research results in the evaluation of such
systems. There is still no standard mechanism or platform to evaluate the accuracy of
these systems, or a generic set of agreed upon evaluation criteria.

5http://sipp.sourceforge.net/

62



In [18], Chen et al. present scalability, adaptability, overhead, latency, complexity,
and effectiveness as metrics for evaluating dynamic configuration techniques. While the
scalability, performance overhead, and complexity metrics are useful in evaluating our
framework, the other metrics are concerned with the quality of adaptation technique.
McCann et al. also define quality of service, cost, granularity/flexibility, failure avoidance,
degree of autonomy, adaptivity, time to adapt, reaction time, sensitivity, and stabilization
as metric for evaluating the self-management quality of a system [61], such metrics are more
suitable for evaluating an adaptation solution like GAAM. In [68], Neti et al. propose a
list of specific quality criteria to evaluate self-healing systems.

In order to enable the comparison of different self-adaptation approaches, Cheng et
al. suggest using utility theory to merge several quality dimensions [20]. They introduce
the Self-Adaptation Fitness Unit (SAFU) as a utility function, which is the weighted sum
of different quality aspects, such as resource overhead and adaptation engineering effort.
The problem of this method is difficulty of quantifying quality attributes and calculating
SAFU.

However, due to the qualitative nature of the first phase of our experiments, we present
a discussion of the framework capabilities, and review its quality attributes, such as scal-
ability and reusability, in the next sections. Then, we report the results of performance
evaluation and show how effective the framework is at runtime.

6.3.1 Framework Capabilities Discussion

One of the major research goals of our experimental studies is to understand the suitability
and fitness of the framework in a real situation from a user’s perspective. Developing a
self-managing version of the CC2 system helped us identify and resolve design and imple-
mentation issues in our framework and to improve its feature set. At the end of this phase
of the experiment, we realized that StarMX satisfies all the needs for enabling adaptation
behavior in the selected case study and provides the required features. In our analysis of
the experiment results, we were more concerned with self-optimizing and proactive self-
healing for improving system availability and avoiding crashes. More experiments with
different case studies are required to deal with other self-* properties to reach a more pre-
cise understanding of the framework features in addressing different self-managing aspects.

As discussed earlier in this section, the presented evaluation metrics in the literature
concentrate more on the quality of adaptation techniques rather than on enabling frame-
works and tools. Therefore, we decided to analyze our framework based on a set of sug-
gested parameters, which reflect its capabilities from different aspects that complement

63



each other. They can also be used by other researchers as the key design issues in building
enabler solutions like StarMX. This is not a comprehensive set, but can be used as a basis
for comparing different solutions.

• Degree of autonomy : The capability of a framework in automating the management
process, which ranges from manual to fully autonomic. IBM defines the five levels of
manual, instrument and monitor, analysis, closed loop, and closed loop with business
priorities, from lowest to highest degree of automation [41].

• Control Scope: The granularity or the scope of what is being managed. From the
smallest to the largest, the levels are: subcomponent (portion of a resource), single
instance (an entire resource like an application), multiple instances of the same type,
heterogenous instances, and business system (a complete set of hardware and software
resources) [41].

• Self-* properties support : The capability of the framework in properly addressing self-
configuring, self-healing, self-optimizing, and self-protecting properties. This metric
shows the generality of a framework in dealing with different self-managing require-
ments.

• Management logic expression: The mechanisms for defining the self-managing re-
quirements. Possible categories are: descriptive format (specific or arbitrary policy
language) and programmatic format (programming language and APIs). This metric
affects the usability of the framework.

• Control loop construction: The mechanisms and facilities provided to support creat-
ing closed control loops. Some frameworks enforce a particular approach or algorithm
to address this matter.

• Monitoring technique: The capability of the framework in supporting different mech-
anisms for monitoring or activating control loops. The common techniques are timer-
based and event-based.

• Data communication facility : The capability of the framework in facilitating com-
munication between control loops or autonomic elements. These elements need to
collaborate with each other at runtime to make the best decision for adaptation.
Values of this property fall within the spectrum of no-support to fully-supported.

• Remote management : The ability of the framework to enable managing a system
remotely and transferring the adaptation cost to a different machine. This property
reveals the scalability of the framework in dealing with management logic.

64



• Applicable environment : The characteristics or specification of the environment and
the target systems that the framework can successfully work with.

• Managing non-Java systems : The capability of the framework to be used in non-
Java environments. This shows how the framework can be used in such contexts, if
possible.

• Runtime updating management logic: The capability of the framework in allowing
runtime modification of the management logic. The system objectives may change
during its life cycle, and it is necessary to be able to update them at runtime without
interrupting the working system.

Table 6.1 summarizes StarMX capabilities in terms of the suggested parameters. Un-
fortunately, we are unable to provide a comparison between our framework and similar
projects in the literature (like Accord [56], AMT [2], ASF [31], Rainbow [29], and J3
Process [87]). The reason is the lack of public access to those frameworks for practical
evaluation. Also, their corresponding papers do not clearly report their capabilities as we
have discussed here.

Table 6.1: Framework Capabilities Summary
Parameter StarMX capability
Degree of autonomy Closed loop
Control scope Multiple instances
Self-* properties support Potentially, all self-* properties
Management logic expression Both descriptive and programmatic
Control loop construction Flexible architecture
Monitoring technique Both timer-based and event-based
Data communication facility Supported by data repositories (memory scopes)
Remote management Supported
Applicable environment Any Java-based system
Managing non-Java systems Via WebServices- or JNI-based anchor objects
Runtime modification Under construction

Regarding the framework support for addressing all self-* properties, StarMX allows
the construction of MAPE loops, which interact with the system via a set of sensors and
effectors. It is believed that with such an architecture, any self-managing aspect can be
addressed [37, 41]. However, in the context of our framework, this should be practically
proven by more experimental studies in the future.

65



6.3.2 Quality Attributes Review

The generality and standard-compliance properties of our framework make it compatible
with different Java EE application servers like JBoss [45] and Weblogic [70]; this has been
proved by our test results. These properties also help to maintain quality attributes such as
reusability, usability, and flexibility. Various attributes have been discussed in the software
engineering literature to evaluate the quality of software from different perspectives, for
instance in [9, 86]. To analyze this work, we have selected the attributes that we believe
are more important for a self-management support framework. Note that this discussion is
based on the best of knowledge and experience of the designers and developers of StarMX,
and these attributes have been kept in mind while developing this framework.

Flexibility: It is the ability that allows the developer to combine his own mechanism,
algorithm, or technique in the design and implementation of the self-management
logic. StarMX provides flexibility in dividing the control loop functions into any
number of consecutive processes, in constructing autonomic managers statically or
dynamically, and in describing the logic as rules, policies, or even code.

Scalability: This attribute shows the capability of a system in properly handling a grow-
ing amount of load. This property is important when performance is a critical factor.
Because of adaptation, if the performance overhead imposed on the system is sig-
nificant, the scalability of the framework becomes more important. The framework
must be able to transfer the load to another machine or remotely manage the sys-
tem. The StarMX user can break the management logic down into more than one
configuration file and deploy and run multiple instances of the framework locally or
remotely, such that each instance is responsible for dealing with a different part of
the self-management requirements.

Usability: This attribute determines how easy it is to employ the framework in an ap-
plication. It can also be considered as the cost of or effort needed for framework
adaptation in a particular context. This attribute plays a key role in the success
of the software. Many software systems and frameworks are not used due to their
difficulty of usage. This attribute is affected by several parameters, such as the newly
introduced concepts (model, language, etc.) that should be learned by the users, or
the amount of coding and configuration effort required for its application.

Following standards, easy integration with different policy engines, and not enforcing
any specific approach to the self-managing problem simplify our framework instan-
tiation and improve its usability. As an example, the policy adapter class for the

66



Imperius framework was implemented with about 80 lines of code, which reflects the
simplicity of integrating the framework with a typical policy engine. The framework
configuration is also designed to be as simple as possible: while it allows very detailed
configuration, only the key properties are mandatory, and other fields can be left at
their default values.

Reusability: This attribute is the ability of using the framework for different systems.
A generic design that considers different usage scenarios improves this factor. On
the other hand, poor design or any dependency on a particular architectural style,
execution environment, other components or frameworks, or a specific self-managing
aspect affects reusability. The presented framework is fully reusable and applicable
to different Java-based systems, since its interaction with its environment is through
standard Java features and interfaces.

Extendibility: This attribute permits the developer to extend the framework to add new
features or to integrate it with other frameworks. StarMX is an open-source project
with well-defined APIs that support this attribute. Integration with different policy
engines is an example of this capability.

6.3.3 Performance Evaluation

Analyzing the framework’s performance is our second major research objective. In large-
scale and server-based systems, performance is one of the key characteristics. In self-
managing systems, the execution of management logic adds extra overhead to the system’s
performance, and it is desired to reduce this overhead by applying efficient techniques and
optimized frameworks.

The first step of performance evaluation is performance tuning. This step is required
to discover the bottlenecks in the software and to optimize the source code to resolve the
problems. To achieve this, we executed the system under a high volume of workloads
and monitored the framework runtime behavior using a specialized profiling tool called
JProfiler [48]. Designed for Java-based systems, it is a professional tool that is capable of
reporting the memory usage of individual objects and the time consumed in each invoked
method in the system. After several rounds of code improvement and execution, we started
the next step, which is the detailed analysis of adaptation cost.

The performance of a framework is said to be good if its impact on the overall system
performance is negligible. Using the StarMX framework, the execution cost of adaptation

67



is considered to be that of the execution chains. This cost is composed of the following
portions, which except for the last part, are out of the control of the framework:

• Sensing and Effecting cost : The amount of time spent in the invoked method of a
sensor or effector to get or set an attribute or to execute an operation on the target
resource.

• MBean proxy cost : If the anchor object is an MBean, this is the time spent in
the proxy itself (from the invocation request time to the moment that the MBean is
invoked). In the JMX architecture, since all accesses to MBeans are directed through
the MBeanServer, this cost will be different in the remote and local access modes.

• Process cost : If the process is policy-based, this will be the time spent in the policy
engine to execute a policy. Otherwise, this is the time required to execute the process
Java code, which is developed by the user. In the remote deployment scenario, this
time is spent on another machine and does not affect the system’s performance.

• Framework cost : The remaining execution time is spent in the framework from
the start of execution to its end, and we aim to minimize this portion of the cost by
optimizing our framework. Moreover, in the remote mode, framework cost does not
affect the system’s performance.

As mentioned before, local and remote deployments have different impacts on perfor-
mance. In the remote mode, the last three portions of cost will not affect the system’s
overall performance since they consume another machine’s resources. Only the anchor ob-
jects (like MBeans) that are collocated with the system components and accessed remotely
will impose some performance overhead. Furthermore, MBean proxy cost may considerably
affect the total execution cost due to the network latency in remote invocation of MBean
objects. On the other hand, all cost portions will affect performance if the framework is
deployed locally. Hence, we decided to conduct our experiments in local mode to analyze
the framework overhead.

To obtain performance-related data, we enabled sensor/effector MBeans with the facil-
ity to compute their execution time. Also, we used the data gathering and logging services
of the framework to collect detailed data on the execution of processes and execution
chains. We also developed a set of software tools to analyze the StarMX output log file to
calculate the expected cumulative numbers.

Table 6.2 summarizes obtained results for the local deployment of our framework in two
different work loads: Low and High. As mentioned in Section 6.2.2, each work load has

68



been tested three times, and the mathematical average of the raw data are reported here.
The presented performance metrics are divided into two sections. The first half shows
the metrics measured directly while the system was running. The second half illustrates
the computed results based on the first half data. These metrics reflect the framework
overhead more distinctively. Note that all times are reported in seconds.

Table 6.2: Performance Analysis Result
Performance metrics Low load High load
Load test time 732 (sec) 850 (sec)
No. of executed processes 1191 1472
Total adaptation time 2.8183 4.7152
Total process execution time 2.3299 3.8645
Total sensing/effecting time 1.0515 1.3617

Average process execution time 2.3663 E-3 3.2032 E-3
Average framework cost per process 0.41 E-3 0.578 E-3
Adaptation proportion to total time 0.38% 0.55%

• Load test time: The total time the system was under load testing.

• No. of executed processes : The total number of Java-based and policy-based pro-
cesses executed in all execution chains during the load test.

• Total adaptation time: The total time spent for adaptation.

• Total process execution time: The total time spent for execution of all processes.
This value is included in the total adaptation time.

• Total sensing/effecting time: The total time consumed for sensing and effecting pur-
poses. This time is included in the total process execution time.

• Average process execution time: The average execution time of a process, calculated
by dividing total process execution time by the no. of executed processes.

• Average framework cost per process : The average time spent in the framework for
executing a process. It is equal to (total adaptation time - total process execution
time) / no. of executed processes. This is a key parameter, which separates the effect
of the framework on overall system performance from other contributing factors.

69



• Adaptation proportion to total time: The percentage of the total time spent on adap-
tation, computed by dividing total adaptation time by load test time.

The difference between load test times in two workloads is attributed to the difference
between the number of requests and the delay between them in the two test modes. Al-
though the system is expected to work properly without any adaptation in the low test
scenario, we observed that it performed some adaptation stemming from false-positives in
the implementation of policies and goals. However, the values in the high load column
show that a greater amount of adaptation has occurred in the high load scenario.

Besides hardware performance, the total adaptation time is affected by several factors,
including: the components that are managed, the adaptation logic (e.g. policies), the
frequency of adaptation, and the framework itself. The average framework cost per process
metric shows the performance of the framework, and how effectively it works at runtime.
The lower this number is, the more optimized the framework behaves. This metric views
the framework performance from a per process perspective. As shown in Table 6.2, this
number is about 0.5 milliseconds in the operational environment, which is negligible and
meets our performance objective, stated in NFR1 (See Section 3.2).

Figure 6.2: Adaptation Cost Distribution

70



Moreover, Figure 6.2 shows the detailed distribution of the adaptation cost between
framework, processes, and sensing/effecting portions in both load scenarios. The majority
of the adaptation cost stems from the execution of the processes, which were mostly policy-
based. This segment is affected by the complexity of the policies and the performance of
the policy engine in executing the policies. We used the IBM ABLE rule engine [40], and
we noticed a remarkable difference in its performance for the different load tests. The
share of framework cost remains the same (about 18%) in both scenarios, which reveals
the consistent behavior of the framework in different work loads.

However, we believe that using the same case study in both phases of our experimental
studies (development and testing) is not a threat to the validity of our evaluations due to
the following points. First, the testing phase always depends on the development phase,
and it is not possible to test a scenario without developing it. Second, the focus of our
testing phase is on the performance of the proposed framework, rather than the quality of
adaptation in the self-managing system. This matter eliminates the dependency of testing
results to the characteristics of self-managing system. Third, to avoid the risk of sporadic
events the testing phase has been performed several times, and the aggregated results are
reported here.

6.4 Summary

This chapter presents the experimental studies conducted to evaluate the StarMX frame-
work. CC2 is a VoIP system based on JSLEE technology, and was used as a case study in
the experiments. The major goals of the study are to assess the suitability of the framework
for building self-managing systems and to analyze its performance overhead. The experi-
ment consists of two steps. First, creating an adaptable version of the CC2 system, and
then testing the new system under different work loads, thereby simulating the real opera-
tional profile. The evaluation results of this experiment are very promising and satisfy our
objectives for the development of this framework. The results are reported to reflect the
framework capabilities in enabling self-managing properties, the quality characteristics of
the framework such as reusability or extensibility, and the performance overhead incurred
by the framework itself.

71



Chapter 7

Conclusion and Future Directions

In this chapter, we summarize the findings of the thesis and outline future directions that
can be pursued from this research. Section 7.1 presents the contributions of the work
presented in the thesis. Section 7.2 outlines some potential future work for extending this
research. Finally, Section 7.3 finishes the thesis with some concluding remarks.

7.1 Contributions

The major contribution of the proposed research is that, it facilitates the development of
self-managing Java-based systems by means of a generic software framework. The principle
contributions of this thesis were described in Chapter 1. We restate these with more
information based on the remainder of the thesis:

• StarMX provides the notion of Execution Chain as a configurable and flexible mecha-
nism to construct control loops that consists of a sequence of processes. Each process
may act as a MAPE loop entity, supporting the monitoring, analyzing, planning, and
executing functions. This mechanism allows separating management logic from busi-
ness logic.

• It presents an infrastructure as the container of execution chains that activates them
at runtime and maintains their life cycle.

• It defines the concept of anchor object as the interface between the execution chains
and the software to be managed.

72



• It provides a set of services to support the runtime behavior of the framework, in-
cluding: a) standard access mechanisms to anchor objects; b) several activation
techniques to invoke execution chains at appropriate times; c) various communica-
tion facilities between execution chains by means of data reporsitories; d) statistical
data gathering about the runtime behavior of the execution chains and processes; e)
a logging feature to record internal events; f) a method to combine several control
loops dynamically and to create a bigger control loop on-the-fly.

• StarMX prepares a platform for developing and testing various adaptation solutions
to deal with different self-* properties and system resources. As an example, the
GAAM [77] approach has been used to address the self-optimization property in the
case study.

7.2 Future Work

The StarMX framework is a newly released system and is in its early stages. There are
numerous ways to improve and extend this work. The following outlines several potential
directions to enhance this framework:

• One of the best approaches to understand the limitations and shortcomings of a
software system is to use it in practice. This framework should be employed in many
other adaptation scenarios to discover new features that should be added or the
problems to be fixed. Addressing different self-* properties will reveal new directions
for improving the framework.

• High-level system objectives change in time; such changes should be reflected in
the management logic. The framework should provide mechanisms to modify the
configured properties and policies dynamically.

• A framework is a software module, and similar to other resources, it may require
adaptation at runtime. Therefore, it should expose a set of sensors and effectors to
enable its management by itself or through other means.

• Service oriented computing is a new trend in software development. Web Services
realizes this model by constructing a system as a composition of different components,
and by providing coarse-grained services. Service-based systems can also be managed
by web-services. As described in Chapter 2, WSDM [69] defines the standard for using
web-services for application management. In Section 5.1.1, we presented an approach

73



to realize this idea. However, this facility can be improved in the framework, so that
the user only needs to provide the web-service information (i.e. WSDL) to the
framework; a proxy object is then created for the web-service, which represents it as
a simple java object.

• To achieve the best result from using a new technology, practitioners always rely on
guidelines and best practices related to the subject. This framework presents a new
technology in automated application management, and it therefore needs a set of
guidelines to assist the developer in using it.

7.3 Conclusion

In this thesis, we presented the StarMX framework, which aims at supporting the develop-
ment of self-adaptive systems. It captures the common problems in different adaptation so-
lutions and provides a set of features and a runtime environment to enable self-management
properties in a configurable manner. We discussed the internal design and architecture of
the framework and defined a process for developing a self-managing system from scratch,
or converting a legacy system to a self-managing one. Several sample scenarios have been
explained to show how different features of the framework can be utilized.

In the next step, we devised a set of experimental studies to evaluate the work. A
sample self-managing system was developed to enhance availability and self-optimizing
properties in a VoIP system. This phase of the experiment was important for capturing
a sound assessment of the framework’s suitability for a real application. It also helped us
in improving the design of the framework from different quality perspectives, like usabil-
ity, reusability, scalability, flexibility, and extendibility. The performance overhead of the
framework was also analyzed by running the self-managing VoIP system under different
workloads. The performance overhead is related to different components including sen-
sors/effectors, adaptation logic (policies), and the framework modules. Through a set of
optimizations, we improved the performance of the framework to minimize its impact on
the overall performance. Finally, our observations revealed that the framework is effective
in addressing self-managing concerns with negligible performance overhead.

74



APPENDICES

75



Appendix A

Sample StarMX Configuration File

The following shows a sample “starmx.xml” configuration file.

<!-- THIS IS A SAMPLE STARMX.XML FILE, DESIGNED FOR ILLUSTRATION PURPOSE ONLY -->
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE starmx PUBLIC "-//STAR Lab//StarMX Configuration DTD 1.0//EN" "starmx-1.0.dtd">
<starmx>

<!-- Creating connection to JBoss MBeanServer using JMX Remote API -->
<mbeanserver id="jboss_ms" lookup-type="jmx" >

<jmx-param service-url="service:jmx:rmi://localhost
/jndi/rmi://localhost:1090/jmxconnector" />

</mbeanserver>

<!-- Anchor objects -->
<mbean id="mbean1" object-name="starmx:name=mb1" mbeanserver="jboss_ms" />
<mbean id="mbean2" object-name="starmx:name=mb2" mbeanserver="jboss_ms" />

<bean id="mailSender" class="util.MailSender" />

<monitor-mbean id="gaugeMonitor"
observed-attribute="size" granularity-period="1000"
mbeanserver="jboss_ms"
object-name="starmx:type=monitor,name=gm" >

<gauge-monitor high-threshold="100" low-threshold="10" notify-high="true" />
<observed-object object-name="starmx:type=Control,name=*"/>

</monitor-mbean>

<!-- A reused policy-based process based on the SPL language -->
<process id="proc1" policy-type="spl" policy-file="policy1.spl">

76



<object name="mb1" ref="mbean1" />
<object name="mailSender" ref="mailSender" />

</policy>

<!-- A timer-based execution chain containing two processes -->
<execute >

<timer-info interval="30" unit="second" />

<processref refid="proc1" />

<!-- local process to the chain, described by Drools rule language (drl) -->
<process id="proc2" policy-type="drl" policy-file="policy2.drl">

<object name="mb1" ref="mbean1" />
<object name="mb2" ref="mbean2" />

</process>
</execute>

<!--
A notification-based execution chain containing two processes,
activated by the notifications coming from the defined gauge
monitor. Only the THRESHOLD_HIGH_VALUE_EXCEEDED notification types
will activate the chain.

-->
<execute >

<notification-info emitter-mbean="gaugeMonitor"
event-type="jmx.monitor.gauge.high" />

<processref refid="proc1" />

<!--
A local Java-based process, which uses only the gauge monitor mbean
as anchor object

-->
<process id="proc3" javaclass="test.MySampleProcess">

<object name="monitor" ref="gaugeMonitor" />
</process>

</execute>

<property name="starmx.log.level">warn</property>
<property name="starmx.log.dir">/starmx/log</property>

<!-- Introducing the policy adapter for Drools rule engine -->
<property name="starmx.policy.adapter.drl">

sample.policy.DroolsPolicyAdapter</property>
</starmx>

77



References

[1] Takoua Abdellatif. Enhancing the Management of a J2EE Application Server Using a
Component-Based Architecture. In EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, pages 70–77, September 2005. 13

[2] Jakub Adamczyk, Rafal Chojnacki, Marcin Jarzab, and Krzystof Zielinski. Rule En-
gine Based Lightweight Framework for Adaptive and Autonomic Computing. LNCS,
5101:255–364, June 2008. 8, 10, 65

[3] Richard J. Anthony. A Policy-Definition Language and Prototype Implementation
Library for Policy-based Autonomic Systems. In IEEE International Conference on
Autonomic Computing (ICAC), pages 265–276, June 2006. 7

[4] Apache. Imperius. http://incubator.apache.org/imperius. 23, 31

[5] Apache. Log4j. http://logging.apache.org/log4j. 38

[6] Apache. Struts. http://struts.apache.org/. 16

[7] Reza Asadollahi, Mazeiar Salehie, and Ladan Tahvildari. StarMX: A Framework
for Developing Self-Managing Java-based Systems. In ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 58–67, May
2009. 7

[8] AspectJ. http://www.eclipse.org/aspectj/. 7

[9] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2nd edition, 2003. 66

[10] Umesh Bellur and Amar Agrawal. Root Cause Isolation for Self Healing in J2EE Envi-
ronments. In International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), pages 324–327, July 2007. 11

78



[11] Philippe Boinot, Renaud Marlet, Jacques NoyC, Gilles Muller, and Charles Consel. A
Declarative Approach for Designing and Developing Adaptive Components. In IEEE
International Conference on Automated Software Engineering (ASE), pages 111–119,
September 2000. 7

[12] Dario Bonino, Alessio Bosca, and Fulvio Corno. An Agent Based Autonomic Semantic
Platform. In International Conference on Autonomic Computing (ICAC), pages 189–
196, May 2004. 11

[13] Dario Bonino, Fulvio Corno, and Laura Farinetti. Dose: A distributed open seman-
tic elaboration platform. In IEEE International Conference on Tools with Artificial
Intelligence, pages 580–588, November 2003. 11

[14] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and Jean-
Bernard Stefani. The FRACTAL component model and its support in Java: Ex-
periences with Auto-adaptive and Reconfigurable Systems. Software - Practice and
Experience, 36(11-12):1257–1284, 2006. 13

[15] Radu Calinescu. Challenges and Best Practices in Policy-Based Autonomic Archi-
tectures. In IEEE International Symposium on Dependable, Autonomic and Secure
Computing, pages 65–74, September 2007. 7, 32

[16] George Candea, Aaron B. Brown, Armando Fox, and David Patterson. Recovery-
Oriented Computing: Building Multitier Dependability. IEEE Computer, 37(11):60–
67, 2004. 11

[17] George Candea, Emre Kiciman, Shinichi Kawamoto, and Armando Fox. Autonomous
Recovery in Componentized Internet Applications. Cluster Computing, 9(2):175–190,
April 2006. 11

[18] Huoping Chen and Salim Hariri. An Evaluation Scheme of Adaptive Configuration
Techniques. In IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 493–496, November 2007. 63

[19] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Architecture-Based Self-
Adaptation in the Presence of Multiple Objectives. In ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 2–8, May 2006.
8

79



[20] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Evaluating the effectiveness
of the rainbow self-adaptive system. In ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages 132–141, May 2009. 63

[21] Ivica Crnkovic and Magnus Larsson. building reliable component-based Software Sys-
tems. Artech House, 2002. 16

[22] Eric M. Dashofy, Andre van der Hoek, and Richard N. Taylor. Towards Architecture-
based Self-Healing Systems. In Workshop on Self-healing Systems, pages 21–26,
November 2002. 11

[23] Mikael Desertot, Clement Escoffier, and Didier Donsez. Autonomic Management of
J2EE Edge Servers. In International ACM Workshop on Middleware for Grid Com-
puting, pages 1–6, November 2005. 13

[24] DMTF. Common Information Model-Simplified Policy Language (CIM-SPL), 2007.
www.dmtf.org/standards/published documents/DSP0231.pdf. 23

[25] Gary Duzan, Joseph Loyall, Richard Schantz, Richard Shapiro, and John Zinky. Build-
ing Adaptive Distributed Applications with Middleware and Aspects. In International
Conference on Aspect-Oriented Software Development (AOSD), pages 66–73, March
2004. 7

[26] Onyeka Ezenwoye and S. Masoud Sadjadi. TRAP/BPEL: A Framework for Dynamic
Adaptation of Composite Services. Technical Report FIU-SCIS-2006-06-02, Florida
International University, June 2006. 7

[27] Mohamed Fayad and Douglas C. Schmidt. Object-Oriented Application Frameworks.
Communications of the ACM, 40(10):32–38, 1997. 16, 17

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley, 1995. 7, 29, 31, 34

[29] David Garlan, Shang Wen Cheng, An Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastruc-
ture. IEEE Computer, 37(10):46–54, October 2004. 8, 65

[30] David Garlan and Bradley Schmerl. Model-based Adaptation for Self-Healing Systems.
In Workshop on Self-healing Systems, pages 27–32, November 2002. 11

80



[31] Ian Gorton, Yan Liu, and Nihar Trivedi. An Extensible, Lightweight Architecture for
Adaptive J2EE Applications. In International Workshop of Software Engineering and
Middleware, pages 47–54, November 2006. 8, 9, 65

[32] Ian Gorton, Yan Liu, and Nihar Trivedi. An extensible and lightweight architecture
for adaptive server applications. Software: Practice and Experience, 38(8):853 – 883,
October 2007. 9

[33] Denis Gracanin, Shawn A. Bohner, and Michael Hinchey. Towards a Model-Driven Ar-
chitecture for Autonomic Aystems. In IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems, pages 500–505, May 2004. 10

[34] Salim Hariri, Bithika Khargharia, Houping Chen, Jingmei Yang, Yeliang Zhang, Man-
ish Parashar, and Hua Liu. The Autonomic Computing Paradigm. Cluster Computing,
9(1):5–17, 2006. 1

[35] Aaron Helsinger, Michael Thome, and Todd Wright. Cougaar: A Scalable, Distributed
Multi-Agent Architecture. In IEEE International Conference on Systems, Man and
Cybernetics, volume 2, pages 1910–1917, October 2004. 10

[36] Hibernate. http://www.hibernate.org/. 16

[37] Michael G. Hinchey and Roy Sterritt. Self-managing software. IEEE Computer,
39(2):107–109, Feb 2006. 1, 65

[38] HP. Design Patterns for JMX and Application Manageability, June 2005.
http://www4.java.no/javazone/2005/presentasjoner/JustinMurray/Justin Murray-
DesignPatternsForJMX javazone2005.pdf. 21

[39] Markus C. Huebscher and Julie A. McCann. A Survey of Autonomic Computing—
Degrees, Models, and Applications. ACM Computing Survey, 40(3):1–28, August
2008. 32

[40] IBM. Agent Building and Learning Environment (ABLE).
http://www.research.ibm.com/able. 31, 59, 71

[41] IBM. An architectural blueprint for autonomic computing. White pa-
per, June 2006. http://www-01.ibm.com/software/tivoli/autonomic/pdfs/-
AC Blueprint White Paper 4th.pdf. 1, 3, 11, 18, 42, 64, 65

81



[42] Florian Irmert, Thomas Fischer, and Klaus Meyer-Wegener. Runtime Adaptation in
a Service-Oriented Component Model. In ICSE International Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 97–104, May
2008. 13

[43] I. Jacobson, M. L. Griss, and P. Jonsson. Software reuse: architecture, process and
organization for business success. ACM Press/Addison-Wesley, 1997. 16

[44] Michael Jarrett and Rudolph Seviora. Constructing an Autonomic Computing Infras-
tructure Using Cougaar. In IEEE International Workshop on Engineering of Auto-
nomic and Autonomous Systems, pages 119–128, March 2006. 11

[45] JBoss. Application Server. http://www.jboss.org/jbossas. 58, 66

[46] JBoss. Drools. http://www.jboss.org/drools. 23

[47] Ralph Johnson and Brian Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(2):22–35, 1988. 15

[48] JProfiler. http://www.ej-technologies.com/products/jprofiler/overview.html. 67

[49] Eser Kandogan, Christopher S. Campbell, Peter Khooshabeh, John Bailey, and
Paul P. Maglio. Policy-based Management of an E-commerce Business Simulation:
An Experimental Study. In IEEE International Conference on Autonomic Comput-
ing (ICAC), pages 33–42, June 2006. 7

[50] Jeffrey O. Kephart. Research Challenges of Autonomic Computing. In International
Conference on Software Engineering (ICSE), pages 15–22, May 2005. 3

[51] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. IEEE
Computer, 36(1):41–50, January 2003. 1, 62

[52] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In
Future of Software Engineering (FOSE), pages 259–268, May 2007. 12, 42, 44, 47

[53] Heather Kreger, Ward Harold, and Leigh Williamson. Java and JMX: Building Man-
ageable Systems. Addison-Wesley, 2002. 21

[54] Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John Mylopoulos. Requirements-
Driven Design of Autonomic Application Software. In Proceedings of the 2006 confer-
ence of the Center for Advanced Studies on Collaborative Research (CASCON), pages
80–94, 2006. 43

82



[55] Timothy C. Lethbridge and Robert Langaniere. Object-Oriented Software Engineering.
McGraw-Hill, 2001. 16

[56] Hua Liu and Manish Parashar. Accord: A Programming Framework for Autonomic
Applications. IEEE Transactions on Systems, Man, and Cybernetics, 36(3):341–352,
May 2006. 9, 65

[57] Hua Liu, Manish Parashar, and Salim Hariri. A Component-Based Programming
Model for Autonomic Applications. In International Conference on Autonomic Com-
puting (ICAC), pages 10–17, May 2004. 9

[58] Joseph P. Loyall, David E. Bakken, Richard E. Schantz, John A. Zinky, David A.
Karr, Rodrigo Vanegas, and Kenneth R. Anderson. QoS Aspect Languages and Their
Runtime Integration. LNCS, 1511:303–318, May 1998. 7

[59] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An adaptive policy-based
framework for network services management. Journal of Network and Systems Man-
agement, 11(3):277–303, September 2003. 7

[60] P. Martin, W. Powley, K. Wilson, W. Tian, T. Xu, and J. Zebedee. The WSDM of Au-
tonomic Computing: Experiences in Implementing Autonomic Web Services. In ICSE
International Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), May 2007. 8

[61] Julie A. McCann and Markus C. Huebscher. Evaluation Issues in Autonomic Com-
puting. LNCS, 3252:597–608, September 2004. 63

[62] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C. Cheng.
Composing Adaptive Software. IEEE Computer, 37(7):56–64, July 2004. 6, 7, 62

[63] Mobicents. http://www.mobicents.org. 57

[64] Mirko Morandini, Loris Penserini, and Anna Perini. Towards Goal-Oriented Devel-
opment of Self-Adaptive Systems. In ICSE International Workshop on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS), pages 9–16, May 2008.
43

[65] Arun Mukhija and Martin Glinz. CASA - A Contract-based Adaptive Software Ar-
chitecture Framework. In IEEE Workshop on Applications and Services in Wireless
Networks, pages 275–286, July 2003. 7, 10

83



[66] Arun Mukhija and Martin Glinz. Runtime Adaptation of Applications Through Dy-
namic Recomposition of Components. LNCS, 3432:124–138, March 2005. 7, 10

[67] Arun Mukhija and Martin Glinz. The CASA Approach to Autonomic Applications. In
IEEE Workshop on Applications and Services in Wireless Networks, pages 173–182,
July 2005. 10

[68] Sangeeta Neti and Hausi A. Muller. Quality Criteria and an Analysis Framework for
Self-Healing Systems. In ICSE International Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), May 2007. 63

[69] OASIS. Web Services Distributed Management (WSDM). http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsdm. 8, 47, 73

[70] Oracle and BEA. Weblogic Application Server.
http://www.oracle.com/bea/index.html. 66

[71] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Runtime Software Adap-
tation: Framework, Approaches, and Styles. In International Conference on Software
Engineering (ICSE), pages 899–910, May 2008. 7

[72] Nauman A. Qureshi and Anna Perini. Engineering Adaptive Requirements. In
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 126–131, May 2009. 43

[73] S. Masoud Sadjadi, Philip K. McKinley, Betty H. Cheng, and R. Kurt Stirewalt.
TRAP/J: Transparent Generation of Adaptable Java Programs. LNCS, 3291:1243–
1261, October 2004. 7, 8

[74] Mazeiar Salehie, Sen Li, Reza Asadollahi, and Ladan Tahvildari. Change Support in
Adaptive Software: A Case Study for Fine-Grained Adaptation. In International IEEE
Conference and Workshops on Engineering of Autonomic and Autonomous Systems,
pages 35–44, April 2009. 42

[75] Mazeiar Salehie, Sen Li, and Ladan Tahvildari. Employing Aspect Composition in
Adaptive Software Systems: A Case Study. In International ACM Linking Aspect
Technology and Evolution Workshop, pages 17–21, March 2009. 7, 42

[76] Mazeiar Salehie and Ladan Tahvildari. Autonomic Computing: Emerging Trends
and Open Problems. In International ICSE Workshop on Design and Evolution of
Autonomic Application Software (DEAS), pages 82–88, May 2005. 43, 62

84



[77] Mazeiar Salehie and Ladan Tahvildari. A Weighted Voting Mechanism for Action
Selection Problem in Self-Adaptive Software. In International IEEE Conference on
Self-Adaptive and Self-Organizing Systems (SASO), pages 328–331, July 2007. 12, 42,
44, 46, 73

[78] Mazeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(2):1–42, May 2009. 2, 6, 7

[79] Marcio A. S. Sallem and Francisco Jose da Silva e Silva. The Adapta Framework
for Building Self-Adaptive Distributed Applications. In International Conference on
Autonomic and Autonomous Systems (ICAS), June 2007. 7, 8, 10

[80] Michael E. Shin. Self-healing components in robust software architecture for concur-
rent and distributed systems. Science of Computer Programming, 57(1):27–44, July
2005. 11

[81] Roy Sterritt. Autonomic computing. Innovations in Systems and Software Engineer-
ing, 1(1):79–88, April 2005. 7

[82] Sun Microsystems. Java Management Extensions (JMX). http://java.sun.com/jmx.
3, 8

[83] Sun Microsystems. Java Management Extensions (JMX) Specification v1.4, 2006.
http://java.sun.com/javase/6/docs/technotes/guides/jmx/JMX 1 4 specification.pdf.
21

[84] Emil Vassev and Joey Paquet. ASSL - Autonomic System Specification Language. In
IEEE Software Engineering Workshop, pages 300–309, Febuary 2007. 12, 42

[85] Emil Vassev and Joey Paquet. Towards an Autonomic Element Architecture for ASSL.
In ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), May 2007. 12

[86] Hans Van Vliet. Software Engineering: Principles and Practice. John Wiley & Sons
Ltd., 2nd edition, 2003. 66

[87] Jules White, Douglas C. Schmidt, and Aniruddha Gokhale. Simplifying Autonomic
Enterprise Java Bean Applications via Model-Driven Development: A Case Study.
LNCS, 3713:601–615, November 2005. 9, 65

85



[88] Jules White, Douglas C. Schmidt, and Aniruddha Gokhale. The J3 Process for Build-
ing Autonomic Enterprise Java Bean Systems. In International Conference on Auto-
nomic Computing (ICAC), pages 363–364, June 2005. 9

[89] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O.
Kephart. An Architectural Approach to Autonomic Computing. In International
Conference on Autonomic Computing (ICAC), pages 2–9, May 2004. 7, 13

[90] Yan Zhang, Anna Liu, and Wei Qu. Software Architecture Design of an Autonomic
System. In Australasian Workshop on Software and System Architectures, pages 5–11,
2004. 12

86


	List of Tables
	List of Figures
	Introduction
	Problem Description
	Thesis Contributions
	Thesis Organization

	Related Work
	Enabling Techniques
	Adaptation Frameworks
	Problem-Specific Solutions
	Design Solutions for Dynamic Adaptation
	Other Experimental Researches
	Summary

	Proposed Framework: StarMX
	Software Frameworks: Concepts and Definitions
	Requirement Definition
	Enabling Technologies
	Java Management Extensions (JMX)
	Policy Engines

	High-level Architecture
	Summary

	Framework Architecture
	Execution Engine
	Execution Chain Architecture
	Realization Scenarios

	Runtime Services
	Runtime Behavior
	Summary

	Developing Self-Managing Application
	Development Steps
	Sample Scenarios

	Framework Configuration
	MBeanServers
	MBeans and MXBeans
	JavaBeans
	Monitor MBeans
	Processes
	Execution Chains

	Summary

	Experimental Studies
	Case Study
	Experiment Design
	Making Case Study Self-Managed
	Testing the Self-Managed Case Study

	Discussion and Evaluation
	Framework Capabilities Discussion
	Quality Attributes Review
	Performance Evaluation

	Summary

	Conclusion and Future Directions
	Contributions
	Future Work
	Conclusion

	APPENDICES
	Sample StarMX Configuration File
	References

