7,321 research outputs found

    Reproducible floating-point atomic addition in data-parallel environment

    Full text link

    Li non-stoichiometry and crystal growth of untwinned 1D quantum spin system Lix Cu2 O2

    Get PDF
    Floating-zone growth of untwinned single crystal of Li_xCu_2O_2 with high Li content of x ~ 0.99 is reported. Li content of Li_xCu_2O_2 has been determined accurately through combined iodometric titration and thermogravimetric methods, which also ruled out the speculation of chemical disorder between Li and Cu ions. The morphology and physical properties of single crystals obtained from slowing-cooling (SL) and floating-zone (FZ) methods are compared. The floating-zone growth under Ar/O_2=7:1 gas mixture at 0.64 MPa produces large area of untwinned crystal with highest Li content, which has the lowest helimagnetic ordering temperature ~19K in the Li_xCu_2O_2 system.Comment: 4 pages, 3 figure

    Harvesting graphics power for MD simulations

    Get PDF
    We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms suitable for short-ranged and long-ranged interactions, and a congruential shift random number generator are presented. The performance of the GPU's is compared to their main processor counterpart. We achieve speedups of up to 80, 40 and 150 fold, respectively. With newest generation of GPU's one can run standard MD simulations at 10^7 flops/$.Comment: 12 pages, 5 figures. Submitted to Mol. Si

    First steps towards more numerical reproducibility

    Get PDF
    International audienceQuestions whether numerical simulation is reproducible or not have been reported in several sensitive applications. Numerical reproducibility failure mainly comes from the finite precision of computer arithmetic. Results of floating-point computation depends on the computer arithmetic precision and on the order of arithmetic operations. Massive parallel HPC which merges, for instance, many-core CPU and GPU, clearly modifies these two parameters even from run to run on a given computing platform. How to trust such computed results? This paper presents how three classic approaches in computer arithmetic may provide some first steps towards more numerical reproducibility

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments

    Get PDF
    [EN] The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of less than 37.7% on 768 cores.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by the European Union's Horizon 2020 research, innovation program under the Marie Sklodowska-Curie grant agreement via the Robust project No. 842528 as well as the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the H2020 EC RIA Programme; in particular, the author gratefully acknowledges the support of Vicenc comma Beltran and the computer resources and technical support provided by BSC. The researchers from Universitat Jaume I (UJI) and Universitat Polit ' ecnica de Valencia (UPV) were supported by MINECO project TIN2017-82972-R. Maria Barreda was also supported by the POSDOC-A/2017/11 project from the Universitat Jaume I.Iakymchuk, R.; Barreda Vayá, M.; Graillat, S.; Aliaga, JI.; Quintana Ortí, ES. (2020). Reproducibility of parallel preconditioned conjugate gradient in hybrid programming environments. International Journal of High Performance Computing Applications. 34(5):502-518. https://doi.org/10.1177/1094342020932650S502518345Aliaga, J. I., Barreda, M., Flegar, G., Bollhöfer, M., & Quintana-Ortí, E. S. (2017). Communication in task-parallel ILU-preconditioned CG solvers using MPI + OmpSs. Concurrency and Computation: Practice and Experience, 29(21), e4280. doi:10.1002/cpe.4280Bailey, D. H. (2013). High-precision computation: Applications and challenges [Keynote I]. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.39Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., … van der Vorst, H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. doi:10.1137/1.9781611971538Burgess, N., Goodyer, C., Hinds, C. N., & Lutz, D. R. (2019). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. IEEE Transactions on Computers, 68(7), 967-978. doi:10.1109/tc.2018.2855729Carson, E., & Higham, N. J. (2018). Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific Computing, 40(2), A817-A847. doi:10.1137/17m1140819Collange, S., Defour, D., Graillat, S., & Iakymchuk, R. (2015). Numerical reproducibility for the parallel reduction on multi- and many-core architectures. Parallel Computing, 49, 83-97. doi:10.1016/j.parco.2015.09.001Dekker, T. J. (1971). A floating-point technique for extending the available precision. Numerische Mathematik, 18(3), 224-242. doi:10.1007/bf01397083Demmel, J., & Hong Diep Nguyen. (2013). Fast Reproducible Floating-Point Summation. 2013 IEEE 21st Symposium on Computer Arithmetic. doi:10.1109/arith.2013.9Demmel, J., & Nguyen, H. D. (2015). Parallel Reproducible Summation. IEEE Transactions on Computers, 64(7), 2060-2070. doi:10.1109/tc.2014.2345391Dongarra, J. J., Du Croz, J., Hammarling, S., & Duff, I. S. (1990). A set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software, 16(1), 1-17. doi:10.1145/77626.79170Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., & Zimmermann, P. (2007). MPFR. ACM Transactions on Mathematical Software, 33(2), 13. doi:10.1145/1236463.1236468Hida, Y., Li, X. S., & Bailey, D. H. (s. f.). Algorithms for quad-double precision floating point arithmetic. Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001. doi:10.1109/arith.2001.930115Hunold, S., & Carpen-Amarie, A. (2016). Reproducible MPI Benchmarking is Still Not as Easy as You Think. IEEE Transactions on Parallel and Distributed Systems, 27(12), 3617-3630. doi:10.1109/tpds.2016.2539167IEEE Computer Society (2008) IEEE Standard for Floating-Point Arithmetic. Piscataway: IEEE Standard, pp. 754–2008.Kulisch, U., & Snyder, V. (2010). The exact dot product as basic tool for long interval arithmetic. Computing, 91(3), 307-313. doi:10.1007/s00607-010-0127-7Kulisch, U. (2013). Computer Arithmetic and Validity. doi:10.1515/9783110301793Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. (1979). Basic Linear Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical Software, 5(3), 308-323. doi:10.1145/355841.355847Lutz, D. R., & Hinds, C. N. (2017). High-Precision Anchored Accumulators for Reproducible Floating-Point Summation. 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH). doi:10.1109/arith.2017.20Mukunoki, D., Ogita, T., & Ozaki, K. (2020). Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for Many-Core Architectures. Lecture Notes in Computer Science, 516-527. doi:10.1007/978-3-030-43229-4_44Nguyen, H. D., & Demmel, J. (2015). Reproducible Tall-Skinny QR. 2015 IEEE 22nd Symposium on Computer Arithmetic. doi:10.1109/arith.2015.28Ogita, T., Rump, S. M., & Oishi, S. (2005). Accurate Sum and Dot Product. SIAM Journal on Scientific Computing, 26(6), 1955-1988. doi:10.1137/030601818Ozaki, K., Ogita, T., Oishi, S., & Rump, S. M. (2011). Error-free transformations of matrix multiplication by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59(1), 95-118. doi:10.1007/s11075-011-9478-1Priest, D. M. (s. f.). Algorithms for arbitrary precision floating point arithmetic. [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. doi:10.1109/arith.1991.145549Rump, S. M., Ogita, T., & Oishi, S. (2008). Accurate Floating-Point Summation Part I: Faithful Rounding. SIAM Journal on Scientific Computing, 31(1), 189-224. doi:10.1137/050645671Rump, S. M., Ogita, T., & Oishi, S. (2009). Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific Computing, 31(2), 1269-1302. doi:10.1137/07068816xRump, S. M., Ogita, T., & Oishi, S. (2010). Fast high precision summation. Nonlinear Theory and Its Applications, IEICE, 1(1), 2-24. doi:10.1587/nolta.1.2Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003Wiesenberger, M., Einkemmer, L., Held, M., Gutierrez-Milla, A., Sáez, X., & Iakymchuk, R. (2019). Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures. Computer Physics Communications, 238, 145-156. doi:10.1016/j.cpc.2018.12.00
    corecore