3,808 research outputs found

    Model-driven engineering approach to design and implementation of robot control system

    Full text link
    In this paper we apply a model-driven engineering approach to designing domain-specific solutions for robot control system development. We present a case study of the complete process, including identification of the domain meta-model, graphical notation definition and source code generation for subsumption architecture -- a well-known example of robot control architecture. Our goal is to show that both the definition of the robot-control architecture and its supporting tools fits well into the typical workflow of model-driven engineering development.Comment: Presented at DSLRob 2011 (arXiv:cs/1212.3308

    A Catalog of Reusable Design Decisions for Developing UML/MOF-based Domain-specific Modeling Languages

    Get PDF
    In model-driven development (MDD), domain-specific modeling languages (DSMLs) act as a communication vehicle for aligning the requirements of domain experts with the needs of software engineers. With the rise of the UML as a de facto standard, UML/MOF-based DSMLs are now widely used for MDD. This paper documents design decisions collected from 90 UML/MOF-based DSML projects. These recurring design decisions were gained, on the one hand, by performing a systematic literature review (SLR) on the development of UML/MOF-based DSMLs. Via the SLR, we retrieved 80 related DSML projects for review. On the other hand, we collected decisions from developing ten DSML projects by ourselves. The design decisions are presented in the form of reusable decision records, with each decision record corresponding to a decision point in DSML development processes. Furthermore, we also report on frequently observed (combinations of) decision options as well as on associations between options which may occur within a single decision point or between two decision points. This collection of decision-record documents targets decision makers in DSML development (e.g., DSML engineers, software architects, domain experts).Series: Technical Reports / Institute for Information Systems and New Medi

    The ModelCC Model-Driven Parser Generator

    Full text link
    Syntax-directed translation tools require the specification of a language by means of a formal grammar. This grammar must conform to the specific requirements of the parser generator to be used. This grammar is then annotated with semantic actions for the resulting system to perform its desired function. In this paper, we introduce ModelCC, a model-based parser generator that decouples language specification from language processing, avoiding some of the problems caused by grammar-driven parser generators. ModelCC receives a conceptual model as input, along with constraints that annotate it. It is then able to create a parser for the desired textual syntax and the generated parser fully automates the instantiation of the language conceptual model. ModelCC also includes a reference resolution mechanism so that ModelCC is able to instantiate abstract syntax graphs, rather than mere abstract syntax trees.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Visual language representation for use case evolution and traceability

    Get PDF
    The primary goal of this research is to assist non-technical stakeholders involved in requirements engineering with a comprehensible method for managing changing requirements within a specific domain. An important part of managing evolving requirements over time is to maintain a temporal ordering of the changes and to support traceability of the modifications. This research defines a semi-formal syntactical and semantic definition of such a method using a visual language, RE/TRAC (Requirements Evolution with Traceability), and a supporting formal semantic notation RE/TRAC-SEM. RE/TRAC-SEM is an ontological specification employing a combination of models, including verbal definitions, set theory and a string language specification RE/TRAC-CF. The language RE/TRAC-CF enables the separation of the syntactical description of the visual language from the semantic meaning of the model, permitting varying target representations and taking advantage of existing efficient parsing algorithms for context-free grammars. As an application of the RE/TRAC representation, this research depicts the hierarchical step-wise refinement of UML use case diagrams to demonstrate evolving system requirements. In the current arena of software development, where systems are described using platform independent models (PIMs) which emphasize the front-end design process, requirements and design documents, including the use cases, have become the primary artifacts of the system. Therefore the management of requirements’ evolution has become even more critical in the creation and maintenance of systems

    Evaluation of a specification approach for vehicle functions using activity diagrams in requirements documents

    Get PDF
    Rising complexity of systems has long been a major challenge in requirements engineering. This manifests in more extensive and harder to understand requirements documents. At the Daimler AG, an approach is applied that combines the use of activity diagrams with natural language specifications to specify vehicle functions. The approach starts with an activity diagram that is created to get an early overview. The contained information is then transferred to a textual requirements document, where details are added and the behavior is refined. While the approach aims at reducing efforts needed to understand a function’s behavior, the application of the approach itself causes new challenges on its own. By examining existing specifications at Daimler, we identified nine categories of inconsistencies and deviations between activity diagrams and their textual representations. This paper extends a previous case study on the subject by presenting additional data we acquired. Our analysis indicates that a coexistence of textual and graphical representations of models without proper tool support results in inconsistencies and deviations

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-
    • …
    corecore