28,541 research outputs found

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    Heterogeneous Proxytypes Extended: Integrating Theory-like Representations and Mechanisms with Prototypes and Exemplars

    Get PDF
    The paper introduces an extension of the proposal according to which conceptual representations in cognitive agents should be intended as heterogeneous proxytypes. The main contribution of this paper is in that it details how to reconcile, under a heterogeneous representational perspective, different theories of typicality about conceptual representation and reasoning. In particular, it provides a novel theoretical hypothesis - as well as a novel categorization algorithm called DELTA - showing how to integrate the representational and reasoning assumptions of the theory-theory of concepts with the those ascribed to the prototype and exemplars-based theories

    Interactive Concept Acquisition for Embodied Artificial Agents

    Get PDF
    An important capacity that is still lacking in intelligent systems such as robots, is the ability to use concepts in a human-like manner. Indeed, the use of concepts has been recognised as being fundamental to a wide range of cognitive skills, including classification, reasoning and memory. Intricately intertwined with language, concepts are at the core of human cognition; but despite a large body or research, their functioning is as of yet not well understood. Nevertheless it remains clear that if intelligent systems are to achieve a level of cognition comparable to humans, they will have to posses the ability to deal with the fundamental role that concepts play in cognition. A promising manner in which conceptual knowledge can be acquired by an intelligent system is through ongoing, incremental development. In this view, a system is situated in the world and gradually acquires skills and knowledge through interaction with its social and physical environment. Important in this regard is the notion that cognition is embodied. As such, both the physical body and the environment shape the manner in which cognition, including the learning and use of concepts, operates. Through active partaking in the interaction, an intelligent system might influence its learning experience as to be more effective. This work presents experiments which illustrate how these notions of interaction and embodiment can influence the learning process of artificial systems. It shows how an artificial agent can benefit from interactive learning. Rather than passively absorbing knowledge, the system actively partakes in its learning experience, yielding improved learning. Next, the influence of embodiment on perception is further explored in a case study concerning colour perception, which results in an alternative explanation for the question of why human colour experience is very similar amongst individuals despite physiological differences. Finally experiments, in which an artificial agent is embodied in a novel robot that is tailored for human-robot interaction, illustrate how active strategies are also beneficial in an HRI setting in which the robot learns from a human teacher

    Knowledge Representation for Robots through Human-Robot Interaction

    Full text link
    The representation of the knowledge needed by a robot to perform complex tasks is restricted by the limitations of perception. One possible way of overcoming this situation and designing "knowledgeable" robots is to rely on the interaction with the user. We propose a multi-modal interaction framework that allows to effectively acquire knowledge about the environment where the robot operates. In particular, in this paper we present a rich representation framework that can be automatically built from the metric map annotated with the indications provided by the user. Such a representation, allows then the robot to ground complex referential expressions for motion commands and to devise topological navigation plans to achieve the target locations.Comment: Knowledge Representation and Reasoning in Robotics Workshop at ICLP 201

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    • …
    corecore