15 research outputs found

    Representing Complexity in Part-Whole Relationships within the Foundational Model of Anatomy

    Get PDF
    The Foundational Model of Anatomy (FMA) is a frame-based ontology that represents declarative knowledge about the structural organization of the human body. Part-whole relationships play a particularly important role in this representation. In order to assure that knowledge-based applications relying on the FMA as a resource can reason about anatomy, we have modified and enhanced currently available schemes of meronymic relationships. We have introduced and defined distinct partitions for decomposing anatomical structures and attributed the part relationships in order to eliminate ambiguity and enhance specificity in the richness of meronymic relationships within the FMA

    Towards a proteomics meta-classification

    Get PDF
    that can serve as a foundation for more refined ontologies in the field of proteomics. Standard data sources classify proteins in terms of just one or two specific aspects. Thus SCOP (Structural Classification of Proteins) is described as classifying proteins on the basis of structural features; SWISSPROT annotates proteins on the basis of their structure and of parameters like post-translational modifications. Such data sources are connected to each other by pairwise term-to-term mappings. However, there are obstacles which stand in the way of combining them together to form a robust meta-classification of the needed sort. We discuss some formal ontological principles which should be taken into account within the existing datasources in order to make such a metaclassification possible, taking into account also the Gene Ontology (GO) and its application to the annotation of proteins

    Symbolic modeling of structural relationships in the Foundational Model of Anatomy

    Get PDF
    The need for a sharable resource that can provide deep anatomical knowledge and support inference for biomedical applications has recently been the driving force in the creation of biomedical ontologies. Previous attempts at the symbolic representation of anatomical relationships necessary for such ontologies have been largely limited to general partonomy and class subsumption. We propose an ontology of anatomical relationships beyond class assignments and generic part-whole relations and illustrate the inheritance of structural attributes in the Digital Anatomist Foundational Model of Anatomy. Our purpose is to generate a symbolic model that accommodates all structural relationships and physical properties required to comprehensively and explicitly describe the physical organization of the human body

    Anatomical information science

    Get PDF
    The Foundational Model of Anatomy (FMA) is a map of the human body. Like maps of other sorts – including the map-like representations we find in familiar anatomical atlases – it is a representation of a certain portion of spatial reality as it exists at a certain (idealized) instant of time. But unlike other maps, the FMA comes in the form of a sophisticated ontology of its objectdomain, comprising some 1.5 million statements of anatomical relations among some 70,000 anatomical kinds. It is further distinguished from other maps in that it represents not some specific portion of spatial reality (say: Leeds in 1996), but rather the generalized or idealized spatial reality associated with a generalized or idealized human being at some generalized or idealized instant of time. It will be our concern in what follows to outline the approach to ontology that is represented by the FMA and to argue that it can serve as the basis for a new type of anatomical information science. We also draw some implications for our understanding of spatial reasoning and spatial ontologies in general

    MIAWARE Software:3D Medical Image Analysis with Automated Reporting Engine and Ontology-based Search

    Get PDF
    which was designed and developed for doctor/radiologist assistance. It allows to analyze an image stack from computed axial tomography scan of lungs (thorax) and, at the same time, to mark all pathologies on images and report their characteristics. The reporting process is normalized- radiologists cannot describe pathological changes with their own words, but can only use some terms from a specific vocabulary set provided by the software. Consequently, a normalized radiological report is automatically generated. Furthermore, MIAWARE software is accompanied with an intelligent search engine for medical reports, based on the relations between parts of the lungs. A logical structure of the lungs is introduced to the search algorithm through the specially developed ontology. As a result, a deductive report search was obtained, which may be helpful for doctors while diagnosing patients ’ cases. Finally, the MIAWARE software can be considered also as a teaching tool for future radiologists and physicians.

    neXtProt: a knowledge platform for human proteins

    Get PDF
    neXtProt (http://www.nextprot.org/) is a new human protein-centric knowledge platform. Developed at the Swiss Institute of Bioinformatics (SIB), it aims to help researchers answer questions relevant to human proteins. To achieve this goal, neXtProt is built on a corpus containing both curated knowledge originating from the UniProtKB/Swiss-Prot knowledgebase and carefully selected and filtered high-throughput data pertinent to human proteins. This article presents an overview of the database and the data integration process. We also lay out the key future directions of neXtProt that we consider the necessary steps to make neXtProt the one-stop-shop for all research projects focusing on human proteins

    The Foundational Model of Anatomy Ontology

    Get PDF
    Anatomy is the structure of biological organisms. The term also denotes the scientific discipline devoted to the study of anatomical entities and the structural and developmental relations that obtain among these entities during the lifespan of an organism. Anatomical entities are the independent continuants of biomedical reality on which physiological and disease processes depend, and which, in response to etiological agents, can transform themselves into pathological entities. For these reasons, hard copy and in silico information resources in virtually all fields of biology and medicine, as a rule, make extensive reference to anatomical entities. Because of the lack of a generalizable, computable representation of anatomy, developers of computable terminologies and ontologies in clinical medicine and biomedical research represented anatomy from their own more or less divergent viewpoints. The resulting heterogeneity presents a formidable impediment to correlating human anatomy not only across computational resources but also with the anatomy of model organisms used in biomedical experimentation. The Foundational Model of Anatomy (FMA) is being developed to fill the need for a generalizable anatomy ontology, which can be used and adapted by any computer-based application that requires anatomical information. Moreover it is evolving into a standard reference for divergent views of anatomy and a template for representing the anatomy of animals. A distinction is made between the FMA ontology as a theory of anatomy and the implementation of this theory as the FMA artifact. In either sense of the term, the FMA is a spatial-structural ontology of the entities and relations which together form the phenotypic structure of the human organism at all biologically salient levels of granularity. Making use of explicit ontological principles and sound methods, it is designed to be understandable by human beings and navigable by computers. The FMA’s ontological structure provides for machine-based inference, enabling powerful computational tools of the future to reason with biomedical data

    OQAFMA Querying Agent for the Foundational Model of Anatomy: a Prototype for Providing Flexible and Efficient Access to Large Semantic Networks

    Get PDF
    The development of large semantic networks, such as the UMLS, which are intended to support a variety of applications, requires a exible and e cient query interface for the extraction of information. Using one of the source vocabularies of UMLS as a test bed, we have developed such a prototype query interface. We rst identify common classes of queries needed by applications that access these semantic networks. Next, we survey STRUQL, an existing query language that we adopted, which supports all of these classes of queries. We then describe the OQAFMA Querying Agent for the Foundational Model of Anatomy (OQAFMA), which provides an e cient implementation of a subset of STRUQL by pre-computing a variety of indices. We describe how OQAFMA leverages database optimization by converting STRUQL queries to SQL. We evaluate the exibility and e ciency of our implementation using English queries written by anatomists. This evaluation veri es that OQAFMA provides exible, e cient access to one such large semantic network, the Foundational Model of Anatomy, and suggests that OQAFMA could be an e cient query interface to other large biomedical knowledge bases, such as the Uni ed Medical Language System

    Top-Level Categories of Constitutively Organized Material Entities - Suggestions for a Formal Top-Level Ontology

    Get PDF
    Application oriented ontologies are important for reliably communicating and managing data in databases. Unfortunately, they often differ in the definitions they use and thus do not live up to their potential. This problem can be reduced when using a standardized and ontologically consistent template for the top-level categories from a top-level formal foundational ontology. This would support ontological consistency within application oriented ontologies and compatibility between them. The Basic Formal Ontology (BFO) is such a foundational ontology for the biomedical domain that has been developed following the single inheritance policy. It provides the top-level template within the Open Biological and Biomedical Ontologies Foundry. If it wants to live up to its expected role, its three top-level categories of material entity (i.e., 'object', 'fiat object part', 'object aggregate') must be exhaustive, i.e. every concrete material entity must instantiate exactly one of them.By systematically evaluating all possible basic configurations of material building blocks we show that BFO's top-level categories of material entity are not exhaustive. We provide examples from biology and everyday life that demonstrate the necessity for two additional categories: 'fiat object part aggregate' and 'object with fiat object part aggregate'. By distinguishing topological coherence, topological adherence, and metric proximity we furthermore provide a differentiation of clusters and groups as two distinct subcategories for each of the three categories of material entity aggregates, resulting in six additional subcategories of material entity.We suggest extending BFO to incorporate two additional categories of material entity as well as two subcategories for each of the three categories of material entity aggregates. With these additions, BFO would exhaustively cover all top-level types of material entity that application oriented ontologies may use as templates. Our result, however, depends on the premise that all material entities are organized according to a constitutive granularity
    corecore