2,499 research outputs found

    Cocycles over interval exchange transformations and multivalued Hamiltonian flows

    Get PDF
    We consider interval exchange transformations of periodic type and construct different classes of recurrent ergodic cocycles of dimension ≥1\geq 1 over this special class of IETs. Then using Poincar\'e sections we apply this construction to obtain recurrence and ergodicity for some smooth flows on non-compact manifolds which are extensions of multivalued Hamiltonian flows on compact surfaces.Comment: 45 pages, 2 figure

    Finite Resolution Dynamics

    Full text link
    We develop a new mathematical model for describing a dynamical system at limited resolution (or finite scale), and we give precise meaning to the notion of a dynamical system having some property at all resolutions coarser than a given number. Open covers are used to approximate the topology of the phase space in a finite way, and the dynamical system is represented by means of a combinatorial multivalued map. We formulate notions of transitivity and mixing in the finite resolution setting in a computable and consistent way. Moreover, we formulate equivalent conditions for these properties in terms of graphs, and provide effective algorithms for their verification. As an application we show that the Henon attractor is mixing at all resolutions coarser than 10^-5.Comment: 25 pages. Final version. To appear in Foundations of Computational Mathematic

    Therapeutic target discovery using Boolean network attractors: improvements of kali

    Full text link
    In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modeling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are i) the possibility to work on asynchronous Boolean networks, ii) a finer assessment of therapeutic targets and iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modeled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but can not replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery

    Frobenius structures on double Hurwitz spaces

    Full text link
    We construct Frobenius structures of "dual type" on the moduli space of ramified coverings of P1\mathbb{P}^1 with given ramification type over two points, generalizing a construction of Dubrovin. A complete hierarchy of hydrodynamic type is obtained from the corresponding deformed flat connection. This provides a suitable framework for the Whitham theory of an enlarged class of integrable hierarchies; we treat as examples the q-deformed Gelfand-Dickey hierarchy and the sine-Gordon equation, and compute the corresponding solutions of the WDVV equations.Comment: 28 page

    Semantic Unification A sheaf theoretic approach to natural language

    Full text link
    Language is contextual and sheaf theory provides a high level mathematical framework to model contextuality. We show how sheaf theory can model the contextual nature of natural language and how gluing can be used to provide a global semantics for a discourse by putting together the local logical semantics of each sentence within the discourse. We introduce a presheaf structure corresponding to a basic form of Discourse Representation Structures. Within this setting, we formulate a notion of semantic unification --- gluing meanings of parts of a discourse into a coherent whole --- as a form of sheaf-theoretic gluing. We illustrate this idea with a number of examples where it can used to represent resolutions of anaphoric references. We also discuss multivalued gluing, described using a distributions functor, which can be used to represent situations where multiple gluings are possible, and where we may need to rank them using quantitative measures. Dedicated to Jim Lambek on the occasion of his 90th birthday.Comment: 12 page

    Wigner Functions versus WKB-Methods in Multivalued Geometrical Optics

    Full text link
    We consider the Cauchy-problem for a class of scalar linear dispersive equations with rapidly oscillating initial data. The problem of high-frequency asymptotics of such models is reviewed,in particular we highlight the difficulties in crossing caustics when using (time-dependent) WKB-methods. Using Wigner measures we present an alternative approach to such asymptotic problems. We first discuss the connection of the naive WKB solutions to transport equations of Liouville type (with mono-kinetic solutions) in the prebreaking regime. Further we show that the Wigner measure approach can be used to analyze high-frequency limits in the post-breaking regime, in comparison with the traditional Fourier integral operator method. Finally we present some illustrating examples.Comment: 38 page

    Operator Formalism on General Algebraic Curves

    Full text link
    The usual Laurent expansion of the analytic tensors on the complex plane is generalized to any closed and orientable Riemann surface represented as an affine algebraic curve. As an application, the operator formalism for the b−cb-c systems is developed. The physical states are expressed by means of creation and annihilation operators as in the complex plane and the correlation functions are evaluated starting from simple normal ordering rules. The Hilbert space of the theory exhibits an interesting internal structure, being splitted into nn (nn is the number of branches of the curve) independent Hilbert spaces. Exploiting the operator formalism a large collection of explicit formulas of string theory is derived.Comment: 34 pages of plain TeX + harvmac, With respect to the first version some new references have been added and a statement in the Introduction has been change

    Complex-Dynamical Extension of the Fractal Paradigm and Its Applications in Life Sciences

    Get PDF
    Complex-dynamical fractal is a hierarchy of permanently, chaotically changing versions of system structure, obtained as the unreduced, causally probabilistic general solution of arbitrary interaction problem (physics/0305119, physics/9806002). Intrinsic creativity of this extension of usual fractality determines its exponentially high operation efficiency, which underlies many specific functions of living systems, such as autonomous adaptability, "purposeful" development, intelligence and consciousness (at higher complexity levels). We outline in more detail genetic applications of complex-dynamic fractality, demonstrate the dominating role of genome interactions, and show that further progressive development of genetic research, as well as other life-science applications, should be based on the dynamically fractal structure analysis of interaction processes involved. The obtained complex-dynamical fractal of a living organism specifies the intrinsic unification of its interaction dynamics at all levels, from genome structure to higher brain functions. We finally summarise the obtained extension of mathematical concepts and approaches closely related to their biological applications
    • …
    corecore