93,908 research outputs found

    Lifting smooth curves over invariants for representations of compact Lie groups, III

    Full text link
    Any sufficiently often differentiable curve in the orbit space V/GV/G of a real finite-dimensional orthogonal representation G→O(V)G \to O(V) of a finite group GG admits a differentiable lift into the representation space VV with locally bounded derivative. As a consequence any sufficiently often differentiable curve in the orbit space V/GV/G can be lifted twice differentiably. These results can be generalized to arbitrary polar representations. Finite reflection groups and finite rotation groups in dimensions two and three are discussed in detail.Comment: 19 pages, Late

    Supersymmetric Kaluza-Klein reductions of M-waves and MKK-monopoles

    Get PDF
    We investigate the Kaluza-Klein reductions to ten dimensions of the purely gravitational half-BPS M-theory backgrounds: the M-wave and the Kaluza-Klein monopole. We determine the moduli space of smooth (supersymmetric) Kaluza-Klein reductions by classifying the freely-acting spacelike Killing vectors which preserve some Killing spinor. As a consequence we find a wealth of new supersymmetric IIA configurations involving composite and/or bound-state configurations of waves, D0 and D6-branes, Kaluza-Klein monopoles in type IIA and flux/nullbranes, and some other new configurations. Some new features raised by the geometry of the Taub-NUT space are discussed, namely the existence of reductions with no continuous moduli. We also propose an interpretation of the flux 5-brane in terms of the local description (close to the branes) of a bound state of D6-branes and ten-dimensional Kaluza-Klein monopoles.Comment: 36 pages (v2: Reference added, "draft" mode disabled; v3: two singular reductions discarded, appendix on spin structures added, references updated

    Representation and Characterization of Non-Stationary Processes by Dilation Operators and Induced Shape Space Manifolds

    Full text link
    We have introduce a new vision of stochastic processes through the geometry induced by the dilation. The dilation matrices of a given processes are obtained by a composition of rotations matrices, contain the measure information in a condensed way. Particularly interesting is the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying process. When the process is stationary, it coincides with the Naimark Dilation and only one rotation matrix is computed, when the process is non-stationary, a set of rotation matrices are computed. In particular, the periodicity of the correlation function that may appear in some classes of signal is transmitted to the set of dilation matrices. These rotation matrices, which can be arbitrarily close to each other depending on the sampling or the rescaling of the signal are seen as a distinctive feature of the signal. In order to study this sequence of matrices, and guided by the possibility to rescale the signal, the correct geometrical framework to use with the dilation's theoretic results is the space of curves on manifolds, that is the set of all curve that lies on a base manifold. To give a complete sight about the space of curve, a metric and the derived geodesic equation are provided. The general results are adapted to the more specific case where the base manifold is the Lie group of rotation matrices. The notion of the shape of a curve can be formalized as the set of equivalence classes of curves given by the quotient space of the space of curves and the increasing diffeomorphisms. The metric in the space of curve naturally extent to the space of shapes and enable comparison between shapes.Comment: 19 pages, draft pape

    A Spin-Statistics Theorem for Certain Topological Geons

    Get PDF
    We review the mechanism in quantum gravity whereby topological geons, particles made from non-trivial spatial topology, are endowed with nontrivial spin and statistics. In a theory without topology change there is no obstruction to ``anomalous'' spin-statistics pairings for geons. However, in a sum-over-histories formulation including topology change, we show that non-chiral abelian geons do satisfy a spin-statistics correlation if they are described by a wave function which is given by a functional integral over metrics on a particular four-manifold. This manifold describes a topology changing process which creates a pair of geons from R3R^3.Comment: 21 pages, Plain TeX with harvmac, 3 figures included via eps

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page

    Integrable flows and Backlund transformations on extended Stiefel varieties with application to the Euler top on the Lie group SO(3)

    Full text link
    We show that the mm-dimensional Euler--Manakov top on so∗(m)so^*(m) can be represented as a Poisson reduction of an integrable Hamiltonian system on a symplectic extended Stiefel variety Vˉ(k,m)\bar{\cal V}(k,m), and present its Lax representation with a rational parameter. We also describe an integrable two-valued symplectic map B\cal B on the 4-dimensional variety V(2,3){\cal V}(2,3). The map admits two different reductions, namely, to the Lie group SO(3) and to the coalgebra so∗(3)so^*(3). The first reduction provides a discretization of the motion of the classical Euler top in space and has a transparent geometric interpretation, which can be regarded as a discrete version of the celebrated Poinsot model of motion and which inherits some properties of another discrete system, the elliptic billiard. The reduction of B\cal B to so∗(3)so^*(3) gives a new explicit discretization of the Euler top in the angular momentum space, which preserves first integrals of the continuous system.Comment: 18 pages, 1 Figur
    • …
    corecore