60,737 research outputs found

    Emergence of Invariance and Disentanglement in Deep Representations

    Full text link
    Using established principles from Statistics and Information Theory, we show that invariance to nuisance factors in a deep neural network is equivalent to information minimality of the learned representation, and that stacking layers and injecting noise during training naturally bias the network towards learning invariant representations. We then decompose the cross-entropy loss used during training and highlight the presence of an inherent overfitting term. We propose regularizing the loss by bounding such a term in two equivalent ways: One with a Kullbach-Leibler term, which relates to a PAC-Bayes perspective; the other using the information in the weights as a measure of complexity of a learned model, yielding a novel Information Bottleneck for the weights. Finally, we show that invariance and independence of the components of the representation learned by the network are bounded above and below by the information in the weights, and therefore are implicitly optimized during training. The theory enables us to quantify and predict sharp phase transitions between underfitting and overfitting of random labels when using our regularized loss, which we verify in experiments, and sheds light on the relation between the geometry of the loss function, invariance properties of the learned representation, and generalization error.Comment: Deep learning, neural network, representation, flat minima, information bottleneck, overfitting, generalization, sufficiency, minimality, sensitivity, information complexity, stochastic gradient descent, regularization, total correlation, PAC-Baye

    Representation learning with structured invariance

    Get PDF
    Invariance is crucial for neural networks, enabling them to generalize effectively across variations of the input data by focusing on key attributes while filtering out irrelevant details. In this thesis, we study representation learning in neural networks through the lens of structured invariance. We start by studying the properties and limitations of the invariance that neural networks can learn from the data. Next, we develop a method to extract the structure of invariance learned by a neural network, providing a more nuanced analysis of the quality of learned invariance. In the next chapter, we focus on contrastive learning, demonstrating how more structured supervision results in a better quality of learned representations. The last two chapters that follow, focus on practical aspects of representation learning with structured invariance in computer vision

    Delving into Inter-Image Invariance for Unsupervised Visual Representations

    Full text link
    Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since there are no pair annotations available. In this work, we present a rigorous and comprehensive study on inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. Through carefully-designed comparisons and analysis, we propose a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. Codes will be released at https://github.com/open-mmlab/OpenSelfSup
    • …
    corecore