7,584 research outputs found

    Traditional Wisdom and Monte Carlo Tree Search Face-to-Face in the Card Game Scopone

    Get PDF
    We present the design of a competitive artificial intelligence for Scopone, a popular Italian card game. We compare rule-based players using the most established strategies (one for beginners and two for advanced players) against players using Monte Carlo Tree Search (MCTS) and Information Set Monte Carlo Tree Search (ISMCTS) with different reward functions and simulation strategies. MCTS requires complete information about the game state and thus implements a cheating player while ISMCTS can deal with incomplete information and thus implements a fair player. Our results show that, as expected, the cheating MCTS outperforms all the other strategies; ISMCTS is stronger than all the rule-based players implementing well-known and most advanced strategies and it also turns out to be a challenging opponent for human players.Comment: Preprint. Accepted for publication in the IEEE Transaction on Game

    Lifted Variable Elimination for Probabilistic Logic Programming

    Full text link
    Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relational languages outside of logic programming. In this paper we adapt Generalized Counting First Order Variable Elimination (GC-FOVE) to the problem of computing the probability of queries to probabilistic logic programs under the distribution semantics. In particular, we extend the Prolog Factor Language (PFL) to include two new types of factors that are needed for representing ProbLog programs. These factors take into account the existing causal independence relationships among random variables and are managed by the extension to variable elimination proposed by Zhang and Poole for dealing with convergent variables and heterogeneous factors. Two new operators are added to GC-FOVE for treating heterogeneous factors. The resulting algorithm, called LP2^2 for Lifted Probabilistic Logic Programming, has been implemented by modifying the PFL implementation of GC-FOVE and tested on three benchmarks for lifted inference. A comparison with PITA and ProbLog2 shows the potential of the approach.Comment: To appear in Theory and Practice of Logic Programming (TPLP). arXiv admin note: text overlap with arXiv:1402.0565 by other author

    Conference Models to Bridge Micro and Macro Studies of Science

    Get PDF
    We propose using community-centered analyses and agent-based models of scientific gatherings such as conferences, symposia and workshops as a way to understand how scientific practices evolve and transition between local, community, and systems levels in science. We suggest using robotics as a case study of global, cross-cultural, interdisciplinary scientific practice. What is needed is a set of modeling frameworks for simulating both the internal and population dynamics of scientific gatherings. In this paper we make the case for conference models as a mid-level unit of analysis that can advance the ways scientists and citizens design systems for transferring and producing knowledge.Science of Science, Conferences, Community-Based Complex Models, Group Size, Methodology

    Approximation and Parameterized Complexity of Minimax Approval Voting

    Full text link
    We present three results on the complexity of Minimax Approval Voting. First, we study Minimax Approval Voting parameterized by the Hamming distance dd from the solution to the votes. We show Minimax Approval Voting admits no algorithm running in time O(2o(dlogd))\mathcal{O}^\star(2^{o(d\log d)}), unless the Exponential Time Hypothesis (ETH) fails. This means that the O(d2d)\mathcal{O}^\star(d^{2d}) algorithm of Misra et al. [AAMAS 2015] is essentially optimal. Motivated by this, we then show a parameterized approximation scheme, running in time O((3/ϵ)2d)\mathcal{O}^\star(\left({3}/{\epsilon}\right)^{2d}), which is essentially tight assuming ETH. Finally, we get a new polynomial-time randomized approximation scheme for Minimax Approval Voting, which runs in time nO(1/ϵ2log(1/ϵ))poly(m)n^{\mathcal{O}(1/\epsilon^2 \cdot \log(1/\epsilon))} \cdot \mathrm{poly}(m), almost matching the running time of the fastest known PTAS for Closest String due to Ma and Sun [SIAM J. Comp. 2009].Comment: 14 pages, 3 figures, 2 pseudocode
    corecore