7 research outputs found

    Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks – Part 1: The Theory of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook-Style Energy Thefts

    Get PDF
    Due to the significant volatility of Broadband over Power Lines (BPL) networks regarding their circuital and topological characteristics, channel statistical modeling recently gains special attention from the BPL communications engineers. Among the recently presented channel attenuation statistical models, initial statistical hybrid model (iSHM) and modified statistical hybrid model (mSHM) have been theoretically defined and applied to overhead medium voltage (OV MV), underground medium voltage (UN MV) and overhead high voltage (OV HV) BPL networks so far. Apart from the iSHM and mSHM definition and application, the theory of the definition procedure of new virtual distribution and transmission BPL topologies, which describes the phases towards defining statistically equivalent BPL topologies and topology subclasses to the real indicative ones, has been demonstrated as well as the class maps, which are 2D capacity contour plots with respect to the channel attenuation statistical distributions (CASDs) parameters of iSHM and mSHM.In this pair of papers, iSHM, mSHM, the definition procedure of new virtual BPL topologies and the class mapping are first applied to overhead low voltage (OV LV) BPL networks. Based on the class maps and the BPL topology database of Topology Identification Methodology (TIM), the required theory for illustrating the footprint of the real OV LV BPL topologies is first presented on class maps in this paper. On the basis of the class maps and the BPL topology database of Fault and Instability Identification Methodology (FIIM), the required theory for illustrating the footprint of the OV LV BPL topologies with branch line faults is first identified on class maps in this paper. On the basis of the class maps and the BPL topology database of hook style energy theft detection method (HS-DET method), the required theory for illustrating the footprint of the OV LV BPL topologies with a hook style energy theft is first demonstrated on class maps in this paper.Citation: Lazaropoulos, A. G. (2020). Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks – Part 1: The Theory of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook-Style Energy Thefts. Trends in Renewable Energy, 6, 61-87. DOI: 10.17737/tre.2020.6.1.0011

    Virtual PLC Lab Enabled Physical Layer Improvement Proposals for PRIME and G3-PLC Standards

    Get PDF
    Narrowband (NB) powerline communication (PLC) is extensively adopted by utilities for the communication in advanced metering infrastructure (AMI) systems. PLC technology needs to overcome channel disturbances present in certain grid segments. This study analyzes improvement proposals of the physical layer of the main narrowband PLC technologies approved by international communication organizations that are currently deployed in Europe: Powerline Intelligent Metering Evolution (PRIME) 1.3.6, PRIME 1.4, and G3-PLC, in order to improve PLC performance under channel disturbances. This thorough study is based on simulations carried out by an innovative ad hoc Virtual PLC Lab, developed by the authors, applied in replicable, fully-automated, and cost reduced test scenarios. The analysis is performed by applying standardized test methods and metrics, and by evaluating the influence of a set of representative channel disturbances defined by the European Telecommunications Standards Institute (ETSI) and selected noises generated by distributed energy resources (DER) in normal operation. PLC performance improvements in terms of equalizer curve fitting, error correction codes, and noisy subcarrier suppression mechanisms are presented. The performance gain due to each physical improvement proposal is accurately measured and compared under the same conditions in a replicable and automated test environment in order to evaluate the use of the proposals in the evolution of future PLC technologies.This work was financially supported in part by the Basque Government under the grant numbers Elkartek KK-2018/00037 and IT1234-19, and by the Spanish Government under the grant RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE)

    Noise Sources, Effects and Countermeasures in Narrowband Power-Line Communications Networks: A Practical Approach

    Get PDF
    The integration of Distributed Generation, Electric Vehicles, and storage without compromising the quality of the power delivery requires the deployment of a communications overlay that allows monitoring and controlling low voltage networks in almost real time. Power Line Communications are gaining momentum for this purpose since they present a great trade-off between economic and technical features. However, the power lines also represent a harsh communications medium which presents different problems such as noise, which is indeed affected by Distributed Generation, Electric Vehicles, and storage. This paper provides a comprehensive overview of the types of noise that affects Narrowband Power Line Communications, including normative noises, noises coming from common electronic devices measured in actual operational power distribution networks, and noises coming from photovoltaic inverters and electric vehicle charging spots measured in a controlled environment. The paper also reviews several techniques to mitigate the effects of noise, paying special attention to passive filtering, as for being one of the most widely used solution to avoid this kind of problems in the field. In addition, the paper presents a set of tests carried out to evaluate the impact of some representative noises on Narrowband Power Line Communications network performance, as well as the effectiveness of different passive filter configurations to mitigate such an impact. In addition, the considered sources of noise can also bring value to further improve PLC communications in the new scenarios of the Smart Grid as an input to theoretical models or simulations.This work has been partly funded by the Spanish Ministry of Economy and Competitiveness through the National Program for Research Aimed at the Challenges of Society under the project OSIRIS (RTC-2014-1556-3) and through the network of excellence REDYD2050 (ENE2015-70032-REDT)

    Study the effect of topology on the performance of an advanced metering infrastructure network.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.A smart grid operates based on the integration of various renewable energy sources, distributed generators and storage units in order to deliver an uninterrupted energy supply to consumers. Such a complex grid requires a network of intelligent sensors and an effective communication infrastructure to provide bi-directional flows of information between different grid entities for monitoring and control purposes. A crucial part of the smart grid communication network is the advanced metering infrastructure connecting a utility company to end-users to support telemetry and remote-control applications. Although different technologies and standards for smart metering systems exist, the G3-PLC standard, which uses the power-line communication (PLC) technology, is the accepted standard in South Africa for connecting smart meters to data concentrators. Studying the topology of an AMI network can help improve the network’s Quality-of-Service to support more advanced applications. The analytical analysis is usually considered a viable method for studying the topological effect on the performance of PLC-based AMI networks, as physically altering such networks can become very costly. Therefore, in this research, such methods have been used to investigate the effect of topology on the performance of the G3-PLC AMI network. To better understand the system, an overview of the G3-PLC standard for smart metering application has been covered. This includes covering the DLMS/COSEM protocol at the application layer and its relation to the G3-PLC. This follows by providing the mathematical model for the G3-PLC AMI network to study the effect of topology on its performance. Based on the provided method, first, the distances between data concentrators and smart meters are identified. Then the graph theory has been used to calculate the transfer function between every node in the system for obtaining the system’s total capacity. It was shown that the performance of the system decreases as longer branches are added to the network

    Replicability Analysis of PLC PRIME Networks for Smart Metering Applications

    No full text
    corecore