6,743 research outputs found

    Replica Creation Algorithm for Data Grids

    Get PDF
    Data grid system is a data management infrastructure that facilitates reliable access and sharing of large amount of data, storage resources, and data transfer services that can be scaled across distributed locations. This thesis presents a new replication algorithm that improves data access performance in data grids by distributing relevant data copies around the grid. The new Data Replica Creation Algorithm (DRCM) improves performance of data grid systems by reducing job execution time and making the best use of data grid resources (network bandwidth and storage space). Current algorithms focus on number of accesses in deciding which file to replicate and where to place them, which ignores resources’ capabilities. DRCM differs by considering both user and resource perspectives; strategically placing replicas at locations that provide the lowest transfer cost. The proposed algorithm uses three strategies: Replica Creation and Deletion Strategy (RCDS), Replica Placement Strategy (RPS), and Replica Replacement Strategy (RRS). DRCM was evaluated using network simulation (OptorSim) based on selected performance metrics (mean job execution time, efficient network usage, average storage usage, and computing element usage), scenarios, and topologies. Results revealed better job execution time with lower resource consumption than existing approaches. This research contributes replication strategies embodied in one algorithm that enhances data grid performance, capable of making a decision on creating or deleting more than one file during same decision. Furthermore, dependency-level-between-files criterion was utilized and integrated with the exponential growth/decay model to give an accurate file evaluation

    The Impact of Data Replicatino on Job Scheduling Performance in Hierarchical data Grid

    Full text link
    In data-intensive applications data transfer is a primary cause of job execution delay. Data access time depends on bandwidth. The major bottleneck to supporting fast data access in Grids is the high latencies of Wide Area Networks and Internet. Effective scheduling can reduce the amount of data transferred across the internet by dispatching a job to where the needed data are present. Another solution is to use a data replication mechanism. Objective of dynamic replica strategies is reducing file access time which leads to reducing job runtime. In this paper we develop a job scheduling policy and a dynamic data replication strategy, called HRS (Hierarchical Replication Strategy), to improve the data access efficiencies. We study our approach and evaluate it through simulation. The results show that our algorithm has improved 12% over the current strategies.Comment: 11 pages, 7 figure

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Optimal Replica Placement in Tree Networks with QoS and Bandwidth Constraints and the Closest Allocation Policy

    Get PDF
    This paper deals with the replica placement problem on fully homogeneous tree networks known as the Replica Placement optimization problem. The client requests are known beforehand, while the number and location of the servers are to be determined. We investigate the latter problem using the Closest access policy when adding QoS and bandwidth constraints. We propose an optimal algorithm in two passes using dynamic programming
    • …
    corecore