1,545 research outputs found

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic ļ¬elds. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop speciļ¬c techniques for content-based sports video analysis to utilise these characteristics. For an efļ¬cient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewerā€™s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identiļ¬cation. Replay segments convey the most important contents in sports videos. It is an efļ¬cient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a ļ¬ve-layer adaboost classiļ¬er and a logo template matching throughout an entire video. The ļ¬ve-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to ļ¬lter out logo transition candidates. Subsequently, a logo template is constructed and employed to ļ¬nd all transition logo sequences. The precision and recall of this system in replay detection is 100% in a ļ¬ve-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identiļ¬ed by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a sufļ¬x tree is proposed to ļ¬nd the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of ā€œnotice ā€. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reļ¬‚ection bias among modality salient signals and combines these signals by reļ¬‚ectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are ļ¬lled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can ļ¬nd goal events at a high precision. Moreover, results of MAR-based highlight detection on the ļ¬nal game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    Extensible Detection and Indexing of Highlight Events in Broadcasted Sports Video

    Get PDF
    Content-based indexing is fundamental to support and sustain the ongoing growth of broadcasted sports video. The main challenge is to design extensible frameworks to detect and index highlight events. This paper presents: 1) A statistical-driven event detection approach that utilizes a minimum amount of manual knowledge and is based on a universal scope-of-detection and audio-visual features; 2) A semi-schema-based indexing that combines the benefits of schema-based modeling to ensure that the video indexes are valid at all time without manual checking, and schema-less modeling to allow several passes of instantiation in which additional elements can be declared. To demonstrate the performance of the events detection, a large dataset of sport videos with a total of around 15 hours including soccer, basketball and Australian football is used

    Multi-level Semantic Analysis for Sports Video

    Get PDF
    There has been a huge increase in the utilization of video as one of the most preferred type of media due to its content richness for many significant applications including sports. To sustain an ongoing rapid growth of sports video, there is an emerging demand for a sophisticated content-based indexing system. Users recall video contents in a high-level abstraction while video is generally stored as an arbitrary sequence of audio-visual tracks. To bridge this gap, this paper will demonstrate the use of domain knowledge and characteristics to design the extraction of high-level concepts directly from audio-visual features. In particular, we propose a multi-level semantic analysis framework to optimize the sharing of domain characteristics

    Video semantic content analysis framework based on ontology combined MPEG-7

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standard, MPEG-7, provides the rich functionalities to enable the generation of audiovisual descriptions and is expressed solely in XML Schema which provides little support for expressing semantic knowledge. In this paper, a video semantic content analysis framework based on ontology combined MPEG-7 is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. MPEG-7 metadata terms of audiovisual descriptions and video content analysis algorithms are expressed in this ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how low-level features and algorithms for video analysis should be applied according to different perception content. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in sports video domain and shows promising results

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    A query description model based on basic semantic unit composite Petri-Net for soccer video

    Get PDF
    Digital video networks are making available increasing amounts of sports video data. The volume of material on offer means that sports fans often rely on prepared summaries of game highlights to follow the progress of their favourite teams. A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. One of the most popular sports around world is soccer. A soccer game is composed of a range of significant events, such as goal scoring, fouls, and substitutions. Automatically detecting these events in a soccer video can enable users to interactively design their own highlights programmes. From an analysis of broadcast soccer video, we propose a query description model based on Basic Semantic Unit Composite Petri-Nets (BSUCPN) to automatically detect significant events within soccer video. Firstly we define a Basic Semantic Unit (BSU) set for soccer videos based on identifiable feature elements within a soccer video, Secondly we design Composite Petri-Net (CPN) models for semantic queries and use these to describe BSUCPNs for semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic event queries based on BSUCPNs to search interactively within soccer videos. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach

    Extraction and Classification of Self-consumable Sport Video Highlights

    Get PDF
    This paper aims to automatically extract and classify self-consumable sport video highlights. For this purpose, we will emphasize the benefits of using play-break sequences as the effective inputs for HMM-based classifier. HMM is used to model the stochastic pattern of high-level states during specific sport highlights which correspond to the sequence of generic audio-visual measurements extracted from raw video data. This paper uses soccer as the domain study, focusing on the extraction and classification of goal, shot and foul highlights. The experiment work which uses183 play-break sequences from 6 soccer matches will be presented to demonstrate the performance of our proposed scheme

    Video semantic content analysis based on ontology

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results
    • ā€¦
    corecore