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Abstract. The rapid increase in the available amount of video data is creating a 

growing demand for efficient methods for understanding and managing it at the 

semantic level. New multimedia standard, MPEG-7, provides the rich 

functionalities to enable the generation of audiovisual descriptions and is 

expressed solely in XML Schema which provides little support for expressing 

semantic knowledge. In this paper, a video semantic content analysis 

framework based on ontology combined MPEG-7 is presented. Domain 

ontology is used to define high level semantic concepts and their relations in the 

context of the examined domain. MPEG-7 metadata terms of audiovisual 

descriptions and video content analysis algorithms are expressed in this 

ontology to enrich video semantic analysis. OWL is used for the ontology 

description. Rules in Description Logic are defined to describe how low-level 

features and algorithms for video analysis should be applied according to 

different perception content. Temporal Description Logic is used to describe the 

semantic events, and a reasoning algorithm is proposed for events detection. 

The proposed framework is demonstrated in sports video domain and shows 

promising results.  

Keywords: Video Semantic Content, MPEG-7, Ontology, OWL, Description 

Logic, Temporal Description Logic. 

1   Introduction 

Audiovisual resources in the form of image, video, audio play more and more 

pervasive role in our lives. Especially, the rapid increase of the available amount in 

video data has revealed an urgent need to develop intelligent methods for 

understanding, storing, indexing and retrieval of video data at the semantic level [1]. 

This means the need to enable uniform semantic description, computational 

interpretation and processing of such resources. 
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The main challenge, often referred to as the semantic gap, is mapping high-level 

semantic concepts into low-level spatiotemporal features that can be automatically 

extracted from video data. Feature extraction, shot detection and object recognition 

are important phases in developing general purpose video content analysis [2] [3]. 

Significant results have been reported in the literature for the last two decades, with 

several successful prototypes [4] [5]. However, the lack of precise models and 

formats for video semantic content representation and the high complexity of video 

processing algorithms make the development of fully automatic video semantic 

content analysis and management a challenging task. And, the mapping rules often 

are written into program code. This causes the existing approach and systems to be 

too inflexible and can‟t satisfy the need of video applications at the semantic level. So 

the use of domain knowledge is very necessary to enable higher level semantics to be 

integrated into the techniques that capture the semantics through automatic parsing. 

Ontology is formal, explicit specifications of domain knowledge: it consists of 

concepts, concept properties, and relationships between concepts and is typically 

represented using linguistic terms, and has been used in many fields as a knowledge 

management and representation approach. At the same time, several standard 

description languages for the expression of concepts and relations in ontology have 

been defined. Among these the important are: Resource Description Framework (RDF) 

[6], Resource Description Framework Schema (RDFS), Web Ontology Language 

(OWL) [7] and, for multimedia, the XML Schema in MPEG-7.   

Many automatic semantic content analysis systems have been presented recently in [8] 

[9] and [10]. In all these systems, low-level based semantic content analysis is not 

associated with any formal representation of the domain. 

The formalization of ontology is based on linguistic terms. Domain specific linguistic 

ontology with multimedia lexicons and possibility of cross document merging has 

instead been presented in [11]. In [12], concepts are expressed in keywords and are 

mapped in object ontology, a shot ontology and a semantic ontology for the 

representation of the results of video segmentation. However, although linguistic 

terms are appropriate to distinguish event and object categories in a special domain, it 

is a challenge to use them for describing low-level features, video content analysis 

and the relationships between them. 

An extending linguistic ontology with multimedia ontology was presented in [13] to 

support video understanding. Multimedia ontology is constructed manually in [14]. 

M.Bertini et al., in [15], present algorithms and techniques that employ an enriched 

ontology for video annotation and retrieval. In [16], perceptual knowledge is 

discovered grouping images into clusters based on their visual and text features and 

semantic knowledge is extracted by disambiguating the senses of words in 

annotations using WordNet. In [17], an approach for knowledge assisted semantic 

analysis and annotation of video content, based on an ontology infrastructure is 

presented. Semantic Web technologies are used for knowledge representation in 

RDF/RDFS. In [18], an object ontology, coupled with a relevance feedback 

mechanism, is introduced to facilitate the mapping of low-level to high-level features 

and allow the definition of relations between pieces of multimedia information.  

Multimedia standards, MPEG-7 [19], provide a rich set of standardized tools to 

enable the generation of audiovisual descriptions which can be understood by 

machines as well as humans and to enable the fast efficient retrieval from digital 



archives as well as filtering of streamed audiovisual broadcasts on the Internet. But 

MPEG-7 is expressed solely in XML Schema and can not provide enough support for 

expressing semantic knowledge, while most of video content is out of the scope of the 

standard at a semantic level. So a machine-understandable and uniform representation 

of the semantics associated with MPEG-7 metadata terms is needed to enable the 

interoperability and integration of MPGE-7 with metadata descriptions from different 

domain. Web ontology language (OWL) can be used to do this, which is an accepted 

language of the semantic web due to its ability to express semantics and semantic 

relationships through class a property hierarchies. Some new metadata initiatives such 

as TV-Anytime [20], MPEG-21 [21], NewsML [22] have tried to combine MPEG-7 

multimedia descriptions with new and existing metadata standards for resource 

discovery, rights management, geospatial and educational.  

In this paper, a framework for video semantic content analysis based on ontology 

combined MPEG-7 is presented. In the proposed video semantic content analysis 

framework, video analysis ontology is developed to formally describe the detection 

process of the video semantic content, in which the low-level visual and audio 

descriptions part of MPEG-7 is combined and expressed in OWL. This idea drives the 

work to investigate the feasibility of expressed MPEG-7 terms in OWL and how to 

express. Semantic concepts within the context of the examined domain area are 

defined in domain ontology. Rules in Description Logic are defined which describe 

how features and algorithms for video analysis should be applied according to 

different perception content and low-level features. Temporal Description Logic is 

used to describe the semantic events, and a reasoning algorithm is proposed for events 

detection. OWL language is used for ontology representation. By exploiting the 

domain knowledge modeled in the ontology, semantic content of the examined videos 

is analyzed to provide a semantic level annotation and event detection.  

2   Framework of Video Semantic Content Analysis 

The proposed video semantic content analysis framework is shown in Fig.1. 

According to the available knowledge for video analysis, a video analysis ontology is 

developed which describes the key elements in video content analysis and supports 

the detection process of the corresponding domain specific semantic content.  The 

visual and aural descriptions of MPEG-7 are combined into this ontology expressed in 

OWL. Semantic concepts within the context of the examined domain are defined in 

domain ontology, enriched with qualitative attributes of the semantic content. OWL 

language is used for knowledge representation for video analysis ontology and 

domain ontology. DL is used to describe how video processing methods and low-level 

features should be applied according to different semantic content, aiming at the 

detection of special semantic objects and sequences corresponding to the high-level 

semantic concepts defined in the ontology. TDL can model temporal relationships and 

define semantically important events in the domain. Reasoning based DL and TDL 

can carry out object, sequence and event detection automatically.  

Based on this framework, video semantic content analysis depends on the knowledge 

base of the system. This framework can easily be applied to different domains 



provided that the knowledge base is enriched with the respective domain ontology. 

OWL semantic definitions for MPEG-7 terms provide rich low-level visual and aural 

descriptions and importantly a common understanding of these descriptions for 

different domains. Further, the ontology-based approach and the utilization of OWL 

language ensure that semantic web services and applications have a greater chance of 

discovering and exploiting the information and knowledge in the video data. 
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Fig. 1. Framework for Video Semantic Content Analysis based on Ontology  

3 Video Analysis Ontology Development 

3.1 The Definition for Video Analysis Ontology  

In order to realize the knowledge-based and automatic video semantic content 

analysis explained in section 2, the knowledge for video analysis is abstracted and a 

video analysis ontology is constructed. In general, video content detection, such as 

objects, considers the utilization of content characteristic features in order to apply the 

appropriate detection algorithms for the analysis process in form of algorithms and 

features. So all elements for the video content analysis, including content, features, 

algorithms and necessary restrictions, must be described clearly in a video analysis 



ontology. The audio track in video data, including aural sequences and objects, is 

important information for video semantic content analysis. The development of the 

proposed video analysis ontology deals with the following concepts (OWL classes) 

and their corresponding properties, as illustrated in Fig. 2. The classes defined above 

are expressed in OWL language in our work. 

 Class Sequence: the subclass and instance of the super-class “Sequence”, all 

video sequences can be classified through the analysis process at shot level, such 

as: long-view shot or tight-view shot in sports video. It is sub-classed to 

VisualSequence and AuralSequence. Each sequence instance is related to 

appropriate feature instances by the hasFeature property and to appropriate 

detection algorithm instances by the useAlgorithm property.  

 Class Object: the subclass and instance of the super-class “Object”, all video 

objects can be detected through the analysis process at frame level. It is sub-

classed to VisualObject and AuralObject. Each object instance is related to 

appropriate feature instances by the hasFeature property and to appropriate 

detection algorithm instances by the useAlgorithm property. 

 Class Feature: the super-class of video low-level features associated with each 

sequence and object. It is linked to the instances of FeatureParameter class 

through the hasFeatureParameter property.  

 Class FeatureParameter: denotes the actual qualitative descriptions of each 

corresponding feature. It is sub-classed according to the defined features. It is 

linked to the instances of pRange class through hasRange property  

 Class pRange: is sub-classed to Minimum and Maximum and allows the 

definition of value restriction to the different feature parameters.  

 Class Algorithm: the super-class of the available processing algorithms to be 

used during the analysis procedure. It is linked to the instances of 

FeatureParameter class through the useFeatureParameter property. 
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Fig. 2. Classes and Properties in Video Analysis Ontology  



3.2 Expressing MPEG-7 in OWL 

In this paper, we try to combine the low-level visual and aural descriptions of MPEG-

7 into video analysis ontology for constructing a common understanding low-level 

features description for different video content. In the same way, we can combine 

other parts of MPEG-7 into an OWL ontology.   

The set of features or properties which is specific to the visual entities defined in 

MPEG-7 include: Color, Texture, Motion and Shape. Each of these features can be 

represented by a choice of descriptors. Similarly there is a set of audio features which 

is applicable to MPEG-7 entities containing audio: Silence, Timbre, Speech and 

Melody.  

Taking the visual feature descriptor “Color” as an example, we demonstrate in Figure 

3, how MPEG-7 descriptions are combined into video analysis ontology with OWL 

definitions.     
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Fig. 3. Definitions of MPEG-7 Color Descriptor in Video Analysis Ontology  

An example of color descriptor expressed in OWL is shown in List 1.  

List 1. Example of Color Descriptor Expressing in OWL 

… 

<owl:Class rdf:ID = “Color”/ > 

<rdfs:label>Color</rdfs:label> 

<rdfs:subClassOf rdf:resource=”#Feature”/> 

</owl:class> 

<owl:Class rdf:ID = “DominantColor”> 

 <rdfs:label>DominantColor</rdfs:label> 

<rdfs:subClassOf rdf:resource=”#Color”/> 

</owl:class> 

<owl:Class rdf:ID = “ScalableColor”> 



 <rdfs:label> ScalableColor </rdfs:label> 

<rdfs:subClassOf rdf:resource=”#Color”/> 

</owl:class> 

… 

4 Rules in Description Logic Construction 

The choice of algorithm employed for the detection of sequences and objects is 

directly dependent on its available characteristic features which directly depend on the 

domain that the sequences and objects involve. So this association should be 

considered based on video analysis knowledge and domain knowledge, and is useful 

for automatic and precise detection. In our work, the association is described by a set 

of properly defined rules represented in DL. 

The rules for detection of sequences and objects are: rules to define the mapping 

between sequence (or object) and features, rules to define the mapping between 

sequence (or object) and algorithm, and rules to determine algorithms input feature 

parameters. The rules are represented in DL as follows: 

 An sequence „S‟ has features F1, F2, …, Fn: 1 2( , , ,..., )nhasFeature S F F F  

 An sequence „S‟ detection use algorithms A1, A2, …, An : 

1 2lg ( , , ,..., )nuseA orithm S A A A  

 An object „O‟ has features F1, F2, …, Fn: 1 2( , , ,..., )nhasFeature O F F F  

 An object „O‟ detection uses algorithms A1, A2, …, An : 

1 2lg ( , , ,..., )nuseA orithm O A A A  

 An algorithm „A‟ uses features parameters FP1, FP2, …, FPn :  

1 2( , , ,..., )nuseFeatureParameter A FP FP FP  

 If  . lg .S hasFeature F hasA orithm A    

Then ( , )useFeatureParameter A FP  (FP is the parameter values of F.) 

 If  . lg .O hasFeature F hasA orithm A    

Then ( , )useFeatureParameter A FP  (FP is the parameter values of F.) 

In the next section, a sports ontology is constructed which provides the vocabulary 

and domain knowledge. In the context of video content analysis the domain ontology 

maps to the important objects, their qualitative and quantitative attributes and their 

interrelation. 

In videos events are very important semantic entities. Events are composed of special 

objects and sequences and their temporal relationships. A general domain ontology is 

appropriate to describe events using linguistic terms. It is inadequate when it must 

describe the temporal patterns of events. Basic DL lacks of constructors which can 

express temporal semantics. So in this paper, Temporal Description Logic (TDL) is 

used to describe the temporal patterns of semantic events based on detected sequences 



and objects. TDL is based on temporal extensions of DL, involving the combination 

of a rather expressive DL with the basis tense modal logic over a linear, unbounded, 

and discrete temporal structure. - is the basic logic considered in this paper. This 

language is composed of the temporal logic , which is able to express interval 

temporal networks, and the non-temporal Feature Description Logic [23]. 

The basic temporal interval relations in - are: before (b), meets (m), during (d), 

overlaps (o), starts (s), finishes (f), equal (e), after(a), met-by (mi), contains (di), 

overlapped-by (oi), started-by (si), finished-by (fi). 

Objects and sequences in soccer videos can be detected based on video analysis 

ontology. Events can be described by means of the occurrence of the objects and 

sequences, and the temporal relationships between them. The events description and 

reasoning algorithm for event detection are introduced in next section. 

5 Sports Domain Ontology 

As previously mentioned, for the demonstration of our framework an application in 

the sports domain is proposed. The detection of semantically significant sequences 

and objects, such as close-up shots, players and referees, is important for 

understanding and extracting video semantic content, and modeling and detecting the 

events in the sports video. The features associated with each sequence and object 

comprise their definitions in terms of low-level features as used in the context of 

video analysis. The category of sequences and objects and the selection of features are 

based on domain knowledge. A sports domain ontology is constructed and the 

definitions used for this ontology are described in this section. 

5.1   Objects 

Only a limited number of object types are observed in sports videos. Visual objects 

include: ball, player, referee, coach, captions, goalposts in soccer, basket in basketball 

and so on. In general, in a sports match there are two kinds of important audio: 

whistle and cheers. So the individuals of aural object class are: whistle and cheers. 

5.2   Sequences 

In sports videos we observe just three distinct visual sequence classes: Loose View, 

Medium View and Tight View. The loose view and medium view share analogical 

visual features and are often associated with one shot zooming action, so they can be 

defined as one visual sequence style named Normal View. When some highlights 

occur, the camera often captures something interesting in the arena, called Out-of-

field. Important semantic events are often replayed in slow motion immediately after 

they occur. So individuals of visual sequence class are:  Normal View (NV), Tight 

View (TV), Out-of-field (OOF) and Slow-motion-replay (SMR). 



5.3   Features and Algorithms 

In section 3.2, we have combined MPEG-7 visual and aural descriptions into video 

analysis ontology expressed in OWL. The definitions of these visual and aural 

features are used for the detections of the sequences and objects defined in the sports 

domain ontology.   

In our previous work [24], HMM was used for distinguishing different visual 

sequences, Sobel edge detection algorithm and Hough transform are used to detect 

“Goalposts” object, and image cluster algorithm based on color features have been 

proved to be effective in the soccer videos content analysis domain. The pixel-wise 

mean square difference of the intensity of every two subsequent frames and RGB 

color histogram of each frame can be used in a HMM model for slow-motion-replay 

detection [25]. For detection of aural objects, frequency energy can be used in SVM 

model for detection of “Cheers”[26], “Whistles” can be detected according to peak 

frequencies which fall within a threshold range [27].  

5.4   Events Description and Detection 

It is possible to detect events in sports videos by means of reasoning on TDL once all 

the sequence and objects defined above are detected with the video content analysis 

ontology. In order to do this we have observed some temporal patterns in soccer 

videos in terms of series of detected sequences and objects. For instance, if an attack 

leads to a scored goal, cheers from audience occurs immediately, then sequences are 

from “Goal Area” to “Player Tight View”, “Out-of-Field”, “Slow Motion Replay”, 

and another player “Tight View”, and finally returning to “Normal View”, then a 

“Caption” is shown. Essentially these temporal patterns are the basic truth existing in 

sports domain which characterize the semantic events in sports videos and can be 

used to formally describe the events and detect them automatically. TDL is used for 

descriptions of the events. And the necessary syntaxes in TDL are listed as follows: 

,x y denote the temporal intervals; 

 is the temporal existential quantifier for introducing the temporal intervals, for 

example:  ,x y ; 

@ is called bindable, and appears in the left hand side of a temporal interval. A 

bindable variable is said to be bound in a concept if it is declared at the nearest 

temporal quantifier in the body of which it occurs. 

For example, the description of goal scored event in soccer event is as follows: 

 

    
    

, , , , , , ,

.

( @ @ @

goal whistle cheers caption GA TV OOF SMR

goal GA whistle GA GA cheers caption TV

cheers TV GA TV TV OOF OOF MSR

goal whistle cheers

Scoredgoal d d d d d d d d

d f d d d d d d d e d

d e d d m d d m d d m d

goal d whistle d cheers d

 

      

       

  @

@ @ @ @ )

caption

GA TV OOF SMR

caption d

GA d TV d OOF d SMR d

 

  

 

, , , , , , ,goal whistle cheers caption GA TV OOF SMRd d d d d d d d represent the temporal intervals of 

responding objects and sequences. 



Based on the descriptions of event in TDL, reasoning on event detection can be 

designed. After detection of sequences and objects in a sports video, every sequence 

and object can be described as formal in TDL as:  . @x C x . C is the individual of 

sequence or object; x is the temporal interval of C. () denotes C dose not any temporal 

relationship with itself. So the reasoning algorithm is described as follows: 

Suppose:  0 1 1, ,..., ,n nS S S S
is a sequence individuals set from detection results of a 

soccer video. Each element 
iS in  0 1 1, ,..., ,n nS S S S

can be represented as follows: 

 . @i i i iS x S x   

The definition of  0 1 1, ,..., ,n nS S S S  includes a latent temporal constraint: 

1, 0,1,..., 1i ix m x i n     which denotes two consecutive sequences in 

 0 1 1, ,..., ,n nS S S S  are consecutive in the temporal axis of the video. 

 0 1 1, ,..., ,m mO O O O  is object individuals set from detection results of a soccer video. 

Each element 
iO in  0 1 1, ,..., ,m mO O O O can be represented as follows: 

 . @i i i iO y O y   

Reasoning algorithm for goal scored event in soccer video: 

Step1. Select the subsets in  0 1 1, ,..., ,n nS S S S
 which are composed of consecutive 

sequences individuals GA->TV->OOF->MSR. Each of the subsets is a candidate goal 

scored event
CkE . 

 1 2 3, , ,Ck k k k kE GA TV OOF MSR    

where k is the subscript mark of the current NV of the current candidate event in 

 0 1 1, ,..., ,n nS S S S . 

Step2. For each candidate event 
CkE ,  Search goal objects 

goalO ,
whistleO , 

cheersO ,
captionO in  0 1 1, ,..., ,m mO O O O , they have corresponding temporal intervals 

goaly , 
whistley , 

cheersy , 
captiony , and satisfy corresponding temporal constrains 

goal ky f GA  , 
whistle ky d G   , 

k cheersGA o y  , 1caption ky e V   , 
1cheers ky e V    .  If all of 

such objects exist, 
CkE  is a goal scored event. 

Other events can be detected using same reasoning algorithm. We just need to adjust 

the definition of candidate event subset and searched objects. A particular strength of 

the proposed reasoning algorithm for events description and detection in TDF based 

on domain ontology is that the user can define and describe different events, and use 

different description in TDL for the same event based on their domain knowledge.  

6 Experiment and Results 

The proposed framework was tested in the sports domain. In this paper we focus on 

developing the framework for video content analysis based on ontology and 

demonstrating the validity of the proposed reasoning algorithm in TDL for event 



detection. So the experiments described here used a manually annotated data set of 

objects and sequences in sports videos. Experiments were carried out using five 

soccer games and three basketball games recordings captured from 4:2:2 YUV PAL 

tapes which were saved as MPEG-1 format. The soccer videos are from two 

broadcasters, ITV and BBC Sport, and are taken from the 2006 World Cup, taking a 

total of 7hs 53mins28s. The basketball videos are NBA games recorded from ESPN, 

FOX Sports and CCTV5 taking a total of 6hs 47mins 18s. 

For soccer videos we defined Goal Scored, Foul in Soccer and Yellow (or Red) Card 

events. And Highlight Attack and Foul events are defined and detected in basketball 

videos. Table 1 shows “Precision” and “Recall” for detection of the semantic events. 

“Actual Num” is the actual number of events in entire matches, which are recognized 

manually; “True Num” is the number of detected correct matches, and “False Num” is 

the number of false matches. 

 

Table.1. Precision and recall for five soccer and basketball semantics 

semantic 
Actual 

Num 

True 

Num 

False 

Num 

Precision 

(%) 

Recall 

(%) 

Goal Scored 10 8 0 100 80 

Foul in Soccer 193 141 11 92.8 73.1 

Yellow (or Red) Card 26 22 2 91.7 84.6 

Highlight Attack 45 36 4 90.0 80.0 

Foul in Basketball 131 106 12 89.8 80.9 

 

From Table 1, it can be seen that the precision results of event detection are higher 

than 89%, but the recall results are relatively low. This is because the description in 

TDL is very strict in logic and do not allow any difference between the definition of 

events and the occurrence of events to be detected, thus the reasoning algorithm for 

event detection can ensure high precision, but it may lose some correct results. If we 

define different descriptions in TDL for the same event which has different 

composition of objects, sequences and temporal relationship, high recall can be 

obtained. 

We also compared the proposed approach with other approaches. In our previous 

work, a Petri-Net (PN) model is used for video semantic content description and 

detection [28]. HMM is a popular model for video event detection. In our experiments, 

we use the PN based approach and HMM based approach proposed in [24] to detect 

semantic content using same video data set. The results are shown in Table 2. 

  

Table.2. Results based on PN and HMM Approach 

semantic 
Goal 

Scored 

Foul 

in Soccer 

Yellow(Red) 

Card 

Highlight 

Attack 

Foul in 

Basketball 

PN 
Pre(%) 85.2 86.6 91.7 85.8 84.5 

Rec(%) 100 84.1 97.5 91.6 90.3 



HMM 
Pre(%) 75.4 63.8 77.6 61.5 59.2 

Rec(%) 80.1 72.5 83.1 64.9 67.3 

 

From Table 2, we can find the precision and recall of PN based approach is almost 

equivalent with the proposed approach. It is because both of these approaches detect 

high-level semantic events based on middle semantics, objects and sequences. Low 

precision and recall are shown in the experimental results of HMM based approach, in 

which low-level features are extracted to training different HMM models for different 

semantic content. This approach maps low-level features to high-level semantic 

directly, which can capture perception feature pattern well but not be effective to 

model and detect spatiotemporal relationship between different semantic content. 

Based on the above experimental results, we believe that the proposed framework for 

video content analysis and event detection method based on TDL have considerable 

potential. We are currently conducting a more thorough experimental investigation 

using a larger set of independent videos and utilizing the framework in different 

domains. 

7 Conclusions and Discussions 

In this paper, a video semantic content analysis framework based on ontology 

combined MPEG-7 is presented. A domain ontology is used to define high level 

semantic concepts and their relations in context of the examined domain. MPEG-7 

low-level feature descriptions expressing in OWL and video content analysis 

algorithms are integrated into the ontology to enrich video semantic analysis.  

In order to create domain ontology for video content analysis, owl is used for 

ontology description language and Rules in DL are defined to describe how features 

and algorithms for video analysis should be applied according to different perception 

content and low-level features, and TDL is used to describe semantic events. A 

ontology in the sports domain is constructed using Protégé for demonstrating the 

validity of the proposed framework. A reasoning algorithm based on TDL is proposed 

for event detection in sports videos. The proposed framework supports flexible and 

managed execution of various application and domain independent video low-level 

analysis tasks. 

Future work includes the enhancement of the domain ontology with more complex 

model representations and the definition of semantically more important and complex 

events in the domain of discourse.  
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