14,827 research outputs found

    Faster Replacement Paths

    Full text link
    The replacement paths problem for directed graphs is to find for given nodes s and t and every edge e on the shortest path between them, the shortest path between s and t which avoids e. For unweighted directed graphs on n vertices, the best known algorithm runtime was \tilde{O}(n^{2.5}) by Roditty and Zwick. For graphs with integer weights in {-M,...,M}, Weimann and Yuster recently showed that one can use fast matrix multiplication and solve the problem in O(Mn^{2.584}) time, a runtime which would be O(Mn^{2.33}) if the exponent \omega of matrix multiplication is 2. We improve both of these algorithms. Our new algorithm also relies on fast matrix multiplication and runs in O(M n^{\omega} polylog(n)) time if \omega>2 and O(n^{2+\eps}) for any \eps>0 if \omega=2. Our result shows that, at least for small integer weights, the replacement paths problem in directed graphs may be easier than the related all pairs shortest paths problem in directed graphs, as the current best runtime for the latter is \Omega(n^{2.5}) time even if \omega=2.Comment: the current version contains an improved resul

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise n×mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Faster all-pairs shortest paths via circuit complexity

    Full text link
    We present a new randomized method for computing the min-plus product (a.k.a., tropical product) of two n×nn \times n matrices, yielding a faster algorithm for solving the all-pairs shortest path problem (APSP) in dense nn-node directed graphs with arbitrary edge weights. On the real RAM, where additions and comparisons of reals are unit cost (but all other operations have typical logarithmic cost), the algorithm runs in time n32Ω(logn)1/2\frac{n^3}{2^{\Omega(\log n)^{1/2}}} and is correct with high probability. On the word RAM, the algorithm runs in n3/2Ω(logn)1/2+n2+o(1)logMn^3/2^{\Omega(\log n)^{1/2}} + n^{2+o(1)}\log M time for edge weights in ([0,M]Z){}([0,M] \cap {\mathbb Z})\cup\{\infty\}. Prior algorithms used either n3/(logcn)n^3/(\log^c n) time for various c2c \leq 2, or O(Mαnβ)O(M^{\alpha}n^{\beta}) time for various α>0\alpha > 0 and β>2\beta > 2. The new algorithm applies a tool from circuit complexity, namely the Razborov-Smolensky polynomials for approximately representing AC0[p]{\sf AC}^0[p] circuits, to efficiently reduce a matrix product over the (min,+)(\min,+) algebra to a relatively small number of rectangular matrix products over F2{\mathbb F}_2, each of which are computable using a particularly efficient method due to Coppersmith. We also give a deterministic version of the algorithm running in n3/2logδnn^3/2^{\log^{\delta} n} time for some δ>0\delta > 0, which utilizes the Yao-Beigel-Tarui translation of AC0[m]{\sf AC}^0[m] circuits into "nice" depth-two circuits.Comment: 24 pages. Updated version now has slightly faster running time. To appear in ACM Symposium on Theory of Computing (STOC), 201

    NC Algorithms for Computing a Perfect Matching and a Maximum Flow in One-Crossing-Minor-Free Graphs

    Full text link
    In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3K_{3,3}-minor-free graphs by building on Kasteleyn's scheme for planar graphs, and stated that this "opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3K_{3,3}-free graphs." In this paper, we finally settle this 30-year-old open problem. Building on recent NC algorithms for planar and bounded-genus perfect matching by Anari and Vazirani and later by Sankowski, we obtain NC algorithms for perfect matching in any minor-closed graph family that forbids a one-crossing graph. This family includes several well-studied graph families including the K3,3K_{3,3}-minor-free graphs and K5K_5-minor-free graphs. Graphs in these families not only have unbounded genus, but can have genus as high as O(n)O(n). Our method applies as well to several other problems related to perfect matching. In particular, we obtain NC algorithms for the following problems in any family of graphs (or networks) with a one-crossing forbidden minor: \bullet Determining whether a given graph has a perfect matching and if so, finding one. \bullet Finding a minimum weight perfect matching in the graph, assuming that the edge weights are polynomially bounded. \bullet Finding a maximum stst-flow in the network, with arbitrary capacities. The main new idea enabling our results is the definition and use of matching-mimicking networks, small replacement networks that behave the same, with respect to matching problems involving a fixed set of terminals, as the larger network they replace.Comment: 21 pages, 6 figure
    corecore