907 research outputs found

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    Modeling, simulation and control of microrobots for the microfactory.

    Get PDF
    Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated with top-down manipulation requiring precision. However, bottom-up manufacturing methods have certain limitations, such as components needing to have predefined shapes and surface coatings, and the number of assembly components being limited to very few. For example, in the case of self-assembly of nano-cubes with an origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nanoscale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nanopositioners. To fulfill the microfactory vision, numerous challenges related to design, power, control, and nanoscale task completion by these microrobots must be overcome. In this work, we study two classes of microrobots for the microfactory: stationary microrobots and mobile microrobots. For the stationary microrobots in our microfactory application, we have designed and modeled two different types of microrobots, the AFAM (Articulated Four Axes Microrobot) and the SolarPede. The AFAM is a millimeter-size robotic arm working as a nanomanipulator for nanoparticles with four degrees of freedom, while the SolarPede is a light-powered centimeter-size robotic conveyor in the microfactory. For mobile microrobots, we have introduced the world’s first laser-driven micrometer-size locomotor in dry environments, called ChevBot to prove the concept of the motion mechanism. The ChevBot is fabricated using MEMS technology in the cleanroom, following a microassembly step. We showed that it can perform locomotion with pulsed laser energy on a dry surface. Based on the knowledge gained with the ChevBot, we refined tits fabrication process to remove the assembly step and increase its reliability. We designed and fabricated a steerable microrobot, the SerpenBot, in order to achieve controllable behavior with the guidance of a laser beam. Through modeling and experimental study of the characteristics of this type of microrobot, we proposed and validated a new type of deep learning controller, the PID-Bayes neural network controller. The experiments showed that the SerpenBot can achieve closed-loop autonomous operation on a dry substrate

    Overactuated systems coordination

    Get PDF
    The economic growth inherent to our nowadays society pushes the industries toward better performances. In the mechatronic context, the increasing competition results in more and more stringent specifications. Thus, the multiple objectives to track become hard to achieve without compromises. A potential interesting solution to this problematic is overactuation, in the sense that, the considered system has more actuated degrees of freedom than the minimal number required to realize a task. Indeed, overactuation enables flexible and efficient responses to a high variety of tasks. Moreover, the coordinated combination of different subsystems enables both to combine their advantages and to cancel their disadvantages. However, the successful coordination of the supplementary degrees of freedom at our disposal, thanks to overactuation, is not trivial. As a matter of fact, the problem of unpredictable response of overactuated systems to a periodic excitation can be particularly critical. Furthermore, the flexibility brought by the overactuation is to be used efficiently in order to justify its corresponding complexity and higher costs. In this sense, the tracking of multiple simultaneous objectives are clearly enabled by the overactuation and thus constitutes a clear motivation for such a solution. As a consequence, the constructive coordination of overactuated systems, which can be very difficult, is very important to achieve stringent objectives. This thesis aims at contributing to the improvement of the coordination of such systems. In this context, three axis of research are considered: differential geometry, potential functions and closed-loop control. Each of these axis is to be taken as a separate insight on the overall coordination of overactuated systems. On the one hand, the formalism of differential geometry enables a solution to the unpredictability problem raised here above. An intelligent parameterization of the solution space to a periodic task enforces the predictability of the subsystem responses. Indeed, the periodicity of the task is transferred to the latter subsystem responses, thanks to an adequate coordination scheme. On the second hand, potential functions enable the coordination of multiple simultaneous objectives to track. A clear hierarchy in the tasks priority is achieved through their successive projections into reduced orthogonal subspaces. Moreover, the previously mentioned predictability problem is also re-examined in this context. Finally, in the frame of an international project in collaboration with the European Southern Observatory (ESO), an opto-mecatronic overactuated system, called Differential Delay Line, enables the consideration of closed-loop coordination. The successful coordination of the subsystems of the Differential Delay Line, combining their intrinsic advantages, is the key control-element ensuring the achievement of the stringent requirements. This thesis demonstrates that a constructive coordination of the supplementary degrees of freedom of overactuated systems enables to achieve, at least partly, the stringent requirements of nowadays mechatronics

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method

    Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope

    Get PDF
    In this paper, we demonstrate velocity-level closedloop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician’s teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system’s ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend

    Towards constrained motion planning of mobile manipulators

    Get PDF
    Abstract-This paper addresses a constrained motion planning problem for mobile manipulators. The constraints are included into the system model by means of a sort of penalty function, and then processed in accordance with the endogenous configuration space approach. Main novelty of this paper lies in deriving a constrained Jacobian motion planning algorithm with the following features: inequality constraints are included into an extended kinematics model using a smooth approximation of the plus function, the model is then regularized against singularities, and the resulting imbalance in error equations is handled as a perturbation of an exponentially stable linear dynamic system. The operation of the constrained motion planning algorithm is illustrated by a motion planning problem of a mobile manipulator with bounds imposed on a platform variable. Performance of the algorithm is tested by computer simulations
    • …
    corecore