13,133 research outputs found

    Detecting Topological Order with Ribbon Operators

    Full text link
    We introduce a numerical method for identifying topological order in two-dimensional models based on one-dimensional bulk operators. The idea is to identify approximate symmetries supported on thin strips through the bulk that behave as string operators associated to an anyon model. We can express these ribbon operators in matrix product form and define a cost function that allows us to efficiently optimize over this ansatz class. We test this method on spin models with abelian topological order by finding ribbon operators for Zd\mathbb{Z}_d quantum double models with local fields and Ising-like terms. In addition, we identify ribbons in the abelian phase of Kitaev's honeycomb model which serve as the logical operators of the encoded qubit for the quantum error-correcting code. We further identify the topologically encoded qubit in the quantum compass model, and show that despite this qubit, the model does not support topological order. Finally, we discuss how the method supports generalizations for detecting nonabelian topological order.Comment: 15 pages, 8 figures, comments welcom

    The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

    Full text link
    We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical data structures and linear algebra manipulation routines involved, which form the core libraries of any tensor network code. At a higher level, we put the spotlight on loop-free network geometries, discussing their advantages, and presenting in detail algorithms to simulate low-energy equilibrium states. Accompanied by discussions of data structures, numerical techniques and performance, this anthology serves as a programmer's companion, as well as a self-contained introduction and review of the basic and selected advanced concepts in tensor networks, including examples of their applications.Comment: 115 pages, 56 figure

    Small Black holes vs horizonless solutions in AdS

    Get PDF
    It is argued that the appropriate macroscopic description of half-BPS mesonic chiral operators in generic d=4d=4 N=1{\cal N}=1 toric gauge theories is in terms of the geometric quantization of smooth horizonless configurations. The relevance of different ensemble macroscopic descriptions is emphasized : lorentzian vs euclidean configurations as (semiclassical) microstates vs saddle points in an euclidean path integral.Comment: 10 pages; v2 improved entropy discussion and new references include

    Simulation of anyons with tensor network algorithms

    Get PDF
    Interacting systems of anyons pose a unique challenge to condensed matter simulations due to their non-trivial exchange statistics. These systems are of great interest as they have the potential for robust universal quantum computation, but numerical tools for studying them are as yet limited. We show how existing tensor network algorithms may be adapted for use with systems of anyons, and demonstrate this process for the 1-D Multi-scale Entanglement Renormalisation Ansatz (MERA). We apply the MERA to infinite chains of interacting Fibonacci anyons, computing their scaling dimensions and local scaling operators. The scaling dimensions obtained are seen to be in agreement with conformal field theory. The techniques developed are applicable to any tensor network algorithm, and the ability to adapt these ansaetze for use on anyonic systems opens the door for numerical simulation of large systems of free and interacting anyons in one and two dimensions.Comment: Fixed typos, matches published version. 16 pages, 21 figures, 4 tables, RevTeX 4-1. For a related work, see arXiv:1006.247

    Forecasts of non-Gaussian parameter spaces using Box-Cox transformations

    Full text link
    Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalisation of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianised parameter space.Comment: 14 pages, 7 figures; minor changes to match version published in MNRA
    corecore