3,070 research outputs found

    Remote atomic clock synchronization via satellites and optical fibers

    Get PDF
    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10e-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at PTB without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 50 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of UTC . Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems

    Demonstrator of Time Services based on European GNSS signals: the H2020 DEMETRA Project

    Get PDF
    During 2015-2016, a European Consortium of 15 partners from 8 different countries, developed the DEMETRA (DEMonstrator of EGNSS services based on Time Reference Architecture), a project funded by the European Union in the frame of the Horizon 2020 program. This project aims at developing and experimenting time dissemination services dedicated to specific users like traffic control, energy distribution, finance, telecommunication, and scientific institutions. Nine services have been developed. These services provide time dissemination with accuracy levels from millisecond to the sub-ns, and also additional services like certification, calibration, or integrity. Five of these services are based on the European GNSS. After a development phase (see PTTI 2016 presentation) the full DEMETRA system has been working during six months for demonstration. The paper will report about the experimentation results, showing performances and limits of the proposed time dissemination services, aiming to foster the exploitation of the European GNSS for timing applications
    corecore