16 research outputs found

    Investigations into the design of a wheelchair-mounted rehabilitation robotic manipulator

    Get PDF
    This research describes the steps towards the development of a low-cost wheelchair-mounted manipulator for use by the physically disabled and elderly. A detailed review of world rehabilitation robotics research has been conducted, covering fifty-six projects. This identified the main areas of research, their scope and results. From this review, a critical investigation of past and present wheelchair-mounted robotic arm projects was undertaken. This led to the formulation of the key design parameters in a final design specification. The results of a questionnaire survey of fifty electric wheelchair users is presented, which has for the first time established the needs and abilities of this disability group. An analysis of muscle type actuators, which mimic human muscle, is presented and their application to robotics, orthotics and prosthetics is given. A new type of rotary pneumatic muscle actuator, the flexator, is introduced and through extensive testing its performance characteristics elucidated. A review of direct-drive rotary pneumatic, hydraulic and electrical actuators has highlighted their relative performance characteristics and has rated their efficiency in terms of their peak torque to motor mass ratio, Tp/MM. From this, the flexator actuator has been shown to have a higher Tp/MM ratio than most conventional actuators. A novel kinematic arrangement is presented which combines the best features of the SCARA and vertically articulated industrial robot geometries, to form the 'Scariculated' arm design. The most appropriate actuator for each joint of this hybrid manipulator was selected, based on the criteria of high Tp/MM ratio, low cost, safety and compatibility. The final design incorporates conventional pneumatic linear double-acting cylinders, a vane type rotary actuator, two dual flexator actuators, and stepping motors for the fme control of the wrist/end effector. An ACSL simulation program has been developed which uses mass flow rate equations, based on one-dimensional compressible flow theory and suppressed critical pressure ratios, to simulate the dual flexator actuator. Theoretical and empirical data is compared and shows a high degree of correlation between results. Finally, the design and development work on two prototypes is discussed. The latest prototype consists of a five-axis manipulator whose pneumatic joints are driven by pulse width modulated solenoid valves. An 8051 microprocessor with proportional error feedback modilles the mark to space ratio of the PWM signal in proportion to the angular error of the joints. This enables control over individual joint speeds, reprogrammable memory locations and position monitoring of each joint. The integration of rehabilitation robotic manipulators into the daily lives of the physically disabled and elderly will significantly influence the role of personal rehabilitation in the next century

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Proceedings of the 4th international conference on disability, virtual reality and associated technologies (ICDVRAT 2002)

    Get PDF
    The proceedings of the conferenc

    Touch future x ROBOT: examining production, consumption, and disability at a social robot research laboratory and a centre for independent living in Japan

    Get PDF
    This thesis contributes to anthropological discussions on the relationship between production and consumption by engaging in multi-sited ethnography that investigates the design of social robots in cutting-edge Japanese research laboratories and also explores the day-to-day lives of Japanese disabled people who are potential consumers of such devices. By drawing on these disparate groups, located in disparate sites, this thesis traces connections but also disconnections as it analyses the 'friction' between the technical problem-solving of researchers and the organized activist politics of disabled people. It investigates the rationales of robot research, messy and multiple, as well as the material and political impetus behind the 'barrier free' movement for independent living. Social robots hold a special interest in Japan because not only do many people, both inside and outside of Japan, believe that the nation has a unique cultural interest and affinity for robots, but, with an ageing population, the Japanese state has looked toward social robots as potential care-givers and as a solution to the 'demographic crisis'. Through the engagement of both science and technology studies and disability studies, this thesis focuses on the theme of problems to show how the problem-making approach of robotics researchers, which identifies problems of the body as a disability to be solved by a technical fix in the form of a robot, contrasts with the perspective from disabled people themselves, who see disability as a problem of society and the environment rather than the individual and the body

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems
    corecore