166,639 research outputs found

    Brazil's remote sensing activities in the Eighties

    Get PDF
    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite

    Locally-adapted convolution-based super-resolution of irregularly-sampled ocean remote sensing data

    Full text link
    Super-resolution is a classical problem in image processing, with numerous applications to remote sensing image enhancement. Here, we address the super-resolution of irregularly-sampled remote sensing images. Using an optimal interpolation as the low-resolution reconstruction, we explore locally-adapted multimodal convolutional models and investigate different dictionary-based decompositions, namely based on principal component analysis (PCA), sparse priors and non-negativity constraints. We consider an application to the reconstruction of sea surface height (SSH) fields from two information sources, along-track altimeter data and sea surface temperature (SST) data. The reported experiments demonstrate the relevance of the proposed model, especially locally-adapted parametrizations with non-negativity constraints, to outperform optimally-interpolated reconstructions.Comment: 4 pages, 3 figure

    Impact of remote sensing upon the planning, management, and development of water resources

    Get PDF
    Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Examples of current radar technology and applications, chapter 5, part B

    Get PDF
    Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m

    The Potential of Visual ChatGPT For Remote Sensing

    Full text link
    Recent advancements in Natural Language Processing (NLP), particularly in Large Language Models (LLMs), associated with deep learning-based computer vision techniques, have shown substantial potential for automating a variety of tasks. One notable model is Visual ChatGPT, which combines ChatGPT's LLM capabilities with visual computation to enable effective image analysis. The model's ability to process images based on textual inputs can revolutionize diverse fields. However, its application in the remote sensing domain remains unexplored. This is the first paper to examine the potential of Visual ChatGPT, a cutting-edge LLM founded on the GPT architecture, to tackle the aspects of image processing related to the remote sensing domain. Among its current capabilities, Visual ChatGPT can generate textual descriptions of images, perform canny edge and straight line detection, and conduct image segmentation. These offer valuable insights into image content and facilitate the interpretation and extraction of information. By exploring the applicability of these techniques within publicly available datasets of satellite images, we demonstrate the current model's limitations in dealing with remote sensing images, highlighting its challenges and future prospects. Although still in early development, we believe that the combination of LLMs and visual models holds a significant potential to transform remote sensing image processing, creating accessible and practical application opportunities in the field

    Application of AIS Technology to Forest Mapping

    Get PDF
    Concerns about environmental effects of large scale deforestation have prompted efforts to map forests over large areas using various remote sensing data and image processing techniques. Basic research on the spectral characteristics of forest vegetation are required to form a basis for development of new techniques, and for image interpretation. Examination of LANDSAT data and image processing algorithms over a portion of boreal forest have demonstrated the complexity of relations between the various expressions of forest canopies, environmental variability, and the relative capacities of different image processing algorithms to achieve high classification accuracies under these conditions. Airborne Imaging Spectrometer (AIS) data may in part provide the means to interpret the responses of standard data and techniques to the vegetation based on its relatively high spectral resolution

    Lecture notes for NSCP-funded short course - Remote sensing training for resource officers and farmers

    Get PDF
    The aim of this course is to provide an introduction to remote sensing, and knowledge and practice in image processing techniques for the extraction of information from remotely sensed data. Aerial photography is the original form of earth remote sensing, and is still a widely used and important data source for many purposes. This course is directed principally at the analysis of digital image data recorded by satellite or airborne platforms. Remote sensing is considered to be the methodology of collecting and interpreting target information over a broad range of the electromagnetic spectrum
    corecore