22,587 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Remote sensing of tidal networks and their relation to vegetation

    Get PDF
    The study of the morphology of tidal networks and their relation to salt marsh vegetation is currently an active area of research, and a number of theories have been developed which require validation using extensive observations. Conventional methods of measuring networks and associated vegetation can be cumbersome and subjective. Recent advances in remote sensing techniques mean that these can now often reduce measurement effort whilst at the same time increasing measurement scale. The status of remote sensing of tidal networks and their relation to vegetation is reviewed. The measurement of network planforms and their associated variables is possible to sufficient resolution using digital aerial photography and airborne scanning laser altimetry (LiDAR), with LiDAR also being able to measure channel depths. A multi-level knowledge-based technique is described to extract networks from LiDAR in a semi-automated fashion. This allows objective and detailed geomorphological information on networks to be obtained over large areas of the inter-tidal zone. It is illustrated using LIDAR data of the River Ems, Germany, the Venice lagoon, and Carnforth Marsh, Morecambe Bay, UK. Examples of geomorphological variables of networks extracted from LiDAR data are given. Associated marsh vegetation can be classified into its component species using airborne hyperspectral and satellite multispectral data. Other potential applications of remote sensing for network studies include determining spatial relationships between networks and vegetation, measuring marsh platform vegetation roughness, in-channel velocities and sediment processes, studying salt pans, and for marsh restoration schemes

    The Novel ''Controlled Intermediate Nuclear Fusion'' and its Possible Industrial Realization as Predicted by Hadronic Mechanics and Chemistry

    Full text link
    In this note, we propose, apparently for the first time, a new type of controlled nuclear fusion called "intermediate" because occurring at energies intermediate between those of the ''cold'' and ''hot'' fusions, and propose a specific industrial realization. For this purpose: 1) We show that known limitations of quantum mechanics, quantum chemistry and special relativity cause excessive departures from the conditions occurring for all controlled fusions; 2) We outline the covering hadronic mechanics, hadronic chemistry and isorelativity specifically conceived, constructed and verified during the past two decades for new cleans energies and fuels; 3) We identify seven physical laws predicted by the latter disciplines that have to be verified by all controlled nuclear fusions to occur; 4) We review the industrial research conducted to date in the selection of the most promising engineering realization as well as optimization of said seven laws; and 5) We propose with construction details a specific {\it hadronic reactor} (patented and international patents pending), consisting of actual equipment specifically intended for the possible industrial production of the clean energy released by representative cases of controlled intermediate fusions for independent scrutiny by interested colleagues.Comment: 32 pages, 5 figures. Journal of Applied Sciences, in pres

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Bell inequalities for random fields

    Full text link
    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.Comment: 18 pages; 1 figure; v4: Essentially the published version; extensive improvements. v3: Better description of the relationship between classical random fields and quantum fields; better description of random field models. More extensive references. v2: Abstract and introduction clarifie
    corecore