529,678 research outputs found
ATP-dependent chromatosome remodeling
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent `remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin
Relationship between infarct tissue characteristics and left ventricular remodeling in patients with versus without early revascularization for acute myocardial infarction as assessed with contrast-enhanced cardiovascular magnetic resonance imaging
Left ventricular (LV) remodeling following myocardial infarction (MI) is the result of complex interactions between various factors, including presence or absence of early revascularization. The impact of early revascularization on the relationship between infarct tissue characteristics and LV remodeling is incompletely known. Therefore, we investigated in patients with versus without successful early revascularization for acute MI potential relations between infarct tissue characteristics and LV remodeling with contrast-enhanced (CE) cardiovascular magnetic resonance (CMR). Patients with versus without successful early revascularization underwent CE-CMR for tissue characterization and assessment of LV remodeling including end-diastolic and end-systolic volumes, LV ejection fraction, and wall motion score index (WMSI). CE-CMR images were analyzed for infarct tissue characteristics including core-, peri- and total-infarct size, transmural extent, and regional scar scores. In early revascularized patients (n = 46), a larger area of infarct tissue correlated significantly with larger LV dimensions and a more reduced LV function (r = 0.39-0.68; all P ≤ 0.01). Multivariate analyses identified peri-infarct size as the best predictor of LV remodeling parameters (R2 = 0.44-0.62). In patients without successful early revascularization (n = 47), there was no correlation between infarct area and remodeling parameters; only peri-infarct size versus WMSI (r = 0.33; P = 0.03) and transmural extent versus LVEF (r = -0.27; P = 0.07) tended to be related. A correlation between infarct tissue characteristics and LV remodeling was found only in patients with early successful revascularization. Peri-infarct size was found to be the best determinant of LV remodeling. Our findings stress the importance of taking into account infarct tissue characteristics and success of revascularization when LV remodeling is studie
The Role of Osteocytes in Targeted Bone Remodeling: A Mathematical Model
Until recently many studies of bone remodeling at the cellular level have
focused on the behavior of mature osteoblasts and osteoclasts, and their
respective precursor cells, with the role of osteocytes and bone lining cells
left largely unexplored. This is particularly true with respect to the
mathematical modeling of bone remodeling. However, there is increasing evidence
that osteocytes play important roles in the cycle of targeted bone remodeling,
in serving as a significant source of RANKL to support osteoclastogenesis, and
in secreting the bone formation inhibitor sclerostin. Moreover, there is also
increasing interest in sclerostin, an osteocyte-secreted bone formation
inhibitor, and its role in regulating local response to changes in the bone
microenvironment. Here we develop a cell population model of bone remodeling
that includes the role of osteocytes, sclerostin, and allows for the
possibility of RANKL expression by osteocyte cell populations. This model
extends and complements many of the existing mathematical models for bone
remodeling but can be used to explore aspects of the process of bone remodeling
that were previously beyond the scope of prior modeling work. Through numerical
simulations we demonstrate that our model can be used to theoretically explore
many of the most recent experimental results for bone remodeling, and can be
utilized to assess the effects of novel bone-targeting agents on the bone
remodeling process
A review of the molecular mechanisms underlying the development and progression of cardiac remodeling
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression.
Here we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling
In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra
Premature cervical remodeling is a critical precursor of spontaneous preterm birth, and the remodeling process is characterized by an increase in tissue hydration. Nevertheless, current clinical measurements of cervical remodeling are subjective and detect only late events, such as cervical effacement and dilation. Here, we present a photoacoustic endoscope that can quantify tissue hydration by measuring near-infrared cervical spectra. We quantify the water contents of tissue-mimicking hydrogel phantoms as an analog of cervical connective tissue. Applying this method to pregnant women in vivo, we observed an increase in the water content of the cervix throughout pregnancy. The application of this technique in maternal healthcare may advance our understanding of cervical remodeling and provide a sensitive method for predicting preterm birth
Changes in Pulmonary Arterial Wall Mechanical Properties and Lumenal Architecture with Induced Vascular Remodeling
To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling
Vascular remodeling of the mouse yolk sac requires hemodynamic force
The embryonic heart and vessels are dynamic and form and remodel while functional. Much has been learned about the genetic
mechanisms underlying the development of the cardiovascular system, but we are just beginning to understand how changes in
heart and vessel structure are influenced by hemodynamic forces such as shear stress. Recent work has shown that vessel
remodeling in the mouse yolk sac is secondarily effected when cardiac function is reduced or absent. These findings indicate that
proper circulation is required for vessel remodeling, but have not defined whether the role of circulation is to provide mechanical
cues, to deliver oxygen or to circulate signaling molecules. Here, we used time-lapse confocal microscopy to determine the role of
fluid-derived forces in vessel remodeling in the developing murine yolk sac. Novel methods were used to characterize flows in
normal embryos and in embryos with impaired contractility (Mlc2a^(–/–)). We found abnormal plasma and erythroblast circulation in
these embryos, which led us to hypothesize that the entry of erythroblasts into circulation is a key event in triggering vessel
remodeling. We tested this by sequestering erythroblasts in the blood islands, thereby lowering the hematocrit and reducing shear
stress, and found that vessel remodeling and the expression of eNOS (Nos3) depends on erythroblast flow. Further, we rescued
remodeling defects and eNOS expression in low-hematocrit embryos by restoring the viscosity of the blood. These data show that
hemodynamic force is necessary and sufficient to induce vessel remodeling in the mammalian yolk sa
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
- …
