37 research outputs found

    Remedial brushless AC operation of fault-tolerant doubly salient permanent-magnet motor drives

    Get PDF
    The doubly salient permanent-magnet (DSPM) machine is a new class of stator-PM brushless machines, which inherently offers the fault-tolerant feature. In this paper, a new operation strategy is proposed and implemented for fault-tolerant DSPM motor drives. The key is to operate the DSPM motor drive in a remedial brushless ac (BLAC) mode under the open-circuit fault condition, while operating in the conventional brushless dc mode under normal condition. Both cosimulation and experimental results confirm that the proposed remedial BLAC operation can maintain the average torque, reduce the torque ripple, and retain the self-starting capability under the open-circuit fault. © 2006 IEEE.published_or_final_versio

    A new fault-tolerant flux-reversal doubly-salient magnetless motor drives with four-phase topology

    Get PDF
    Paper no. YD-014184The proposed fault-tolerant flux-reversal doubly-salient (FT-FRDS) magnetless motor drive consists of armature winding for driving and DC-field winding for field excitation. The purpose of this paper is to investigate two remedial strategies for fault-tolerant operations of the proposed motor drive under short-circuit faults. First, short-circuit phase can be disabled and the short-circuit fault can then be regarded as the open-circuit fault. By reconstructing the healthy armature phases, the reduced torque can be remedied and this is known as the fault-tolerant brushless AC (FT-BLAC) operations. Second, short-circuit fault can also be remedied based on the DC-field regulation alone, and this is known as the fault-tolerant DC-field (FT-DC) operation. These two remedial operations are compared and verified by the finite-element-method (FEM). © 2015 IEEE.postprin

    Comparison of fault-tolerant operations for permanent-magnet hybrid brushless motor drive

    Get PDF
    Paper No. CS-06The permanent-magnet hybrid brushless (PMHB) motor adopts both DC field windings and PMs for excitation. It not only offers effective online flux control, but also flexible brushless DC (BLDC) or brushless AC (BLAC) operations. The key of this paper is to investigate two remedial strategies for fault-tolerant operations of the PMHB motor drive under open-circuit faults. First, by utilizing field excitation boosting, the reduced torque due to one phase loss can be remedied, the so-called remedial BLDC operation mode. Second, by reconstructing armature fields due to the healthy phase currents, the reduced torque can also be remedied, the so-called remedial BLAC operation mode. Finally, these two remedial operation modes are compared and verified by experimentation, hence confirming the validity of the proposed fault-tolerant PMHB motor drive. © 2006 IEEE.published_or_final_versionThe 11th Joint Magnetism and Magnetic Materials - INTERMAG Conference, Washington, DC., 17-21 January 2010. In IEEE Transactions on Magnetics, 2010, v. 46 n. 6, p. 1378-138

    Stator-flux-oriented fault-tolerant control of flux-switching permanent-magnet motors

    Get PDF
    Flux-switching permanent-magnet (FSPM) motors are a newly developed brushless AC (BLAC) machine having magnets in the stator. This paper proposes and implements a stator-flux-oriented (SFO) control strategy for fault-tolerant operation of FSPM motors. The key is to set the q-axis component of armature current invariant before and after the fault. In the rotor reference frame, by building a SFO-dq equation of the FSPM motor, the fault-tolerant control strategy is deduced. The finite-element method and the field-circuit cosimulation method are employed to analyze the performance of the FSPM motor drive. Finally, a dSPACE-based FSPM motor drive platform is built for experimental verification. Both the steady-state and dynamic performances at normal and fault-tolerant operations are tested, confirming that the proposed fault-tolerant operation can keep the output torque invariant while offering good dynamic performance during fault. © 2011 IEEE.published_or_final_versionThe IEEE International Magnetic Conference (INTERMAG2011), Taipei, Taiwan, 25-29 April 2011. In IEEE Transactions on Magnetics, 2011, v. 47 n. 10, p. 4191-419

    Remedial injected harmonic current operation of redundant flux-switching permanent magnet motor drives

    Get PDF
    published_or_final_versio

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Electromagnetic design of a new hybrid-excited flux-switching machine for fault-tolerant operations

    Get PDF
    Paper no. YD-011541In this paper, a new hybrid-excited flux-switching (HEFS) machine is proposed with the outer-rotor configuration, which possesses the distinct feature of fault-tolerant operation. Comparing with the conventional permanent-magnet (PM) machine, it combines merits of flux control, high mechanical integrity, and low-cost. Furthermore, its fault-tolerant feature ensures its continuous operation in the event of winding faults. Hence, a new 12/10-pole HEFS machine is designed and implemented in this paper. By using time-stepping finite element method, open circuit (OC) fault and short circuit (SC) faults on the armature winding are investigated in the proposed machine for the fault-tolerant operation. The phase-current reconfiguration and flux control are applied for the remediation of the OC fault, while the SC faults is remedied by the phase-current reconfiguration merely. Both approaches demonstrate their good performances for the fault-tolerant operation. © 2015 IEEE.postprin

    Design of a new outer-rotor flux-controllable vernier PM in-wheel motor drive for electric vehicle

    Get PDF
    This paper proposes a new in-wheel motor drive for electric vehicle (EV), which utilizes the outer-rotor topology to directly couple with the tire rims and hence removing the mechanical transmission. The key is to use the vernier structure for obtaining the high-speed to low-speed gear effect and achieving the high output torque at low speed operation. Also, the proposed motor drive adopts the DC field winding for performing the flux weakening control at high speed operation. Thus, this new in-wheel motor drive can smoothly operate within the speed range of 0∼1000rpm at different operation modes for EVs. The motor drive and its three-operation modes for EV operation, as well as the steady-state and transient performances are analyzed by using the time-stepping finite-element-method. © 2011 IEEE.published_or_final_versionThe 2011 International Conference on Electrical Machines and Systems (ICEMS 2011), Beijing, China, 20-23 August 2011. In Proceedings of ICEMS, 2011, p. 1-

    Comparison of outer-rotor permanent magnet machines for in-wheel drives

    Get PDF
    This paper quantitatively discuss and compare the emerging outer-rotor PM in-wheel motor drives, which can directly couple with the EV tire rim and remove the traditional mechanical transmission. These new types of in-wheel motor drives include the PM hybrid brushless (PMHB) type, PM memory brushless (PMMB) type, PM magnetic-geared (PMMG) type, and PM vernier brushless (PMVB) type. And all of them are able to produce the high torque output by their distinct features of flux control or flux modulation. Their configurations, in-wheel drive operation principles, and detailed operation performances are given to verify the validity of their in-wheel applications. © 2013 IEEE.published_or_final_versio

    A transverse flux permanent magnet linear generator for hybrid electric vehicles

    Get PDF
    Article: TD-007358This paper presents a transverse flux permanent magnet (TFPM) linear generator for the free-piston generation application, which not only possessing the merits of the existing TFPM machine, but also providing a simple structure which is essential for power generation with maintenance-free operation. Also, the machine configuration is optimized such that the induced voltage is maximized while the cogging force is minimized. Hence, a 2-phase linear TFPM is resulted, which is well supported by performance analysis.published_or_final_versio
    corecore