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Abstract—This paper presents a transverse flux permanent 
magnet (TFPM) linear generator for the free-piston generation 
application, which not only possessing the merits of the existing 
TFPM machine, but also providing a simple structure which is 
essential for power generation with maintenance-free operation. 
Also, the machine configuration is optimized such that the 
induced voltage is maximized while the cogging force is 
minimized. Hence, a 2-phase linear TFPM is resulted, which is 
well supported by performance analysis. 

Keywords— transverse flux;permanent magnet, linear 
generator; hybrid electric vehicles . 

I.  INTRODUCTION 

With increasing concerns on serious environment pollution 
and exhausted natural resources, green transportation concept 
is accepted widely all around the world. Automobiles, which 
are the key elements in the transportation, need electrification 
for emission reduction and fuel efficiency improvement. 
Therefore, the development of electric vehicles (EVs) is in a 
rapid pace in recent years [1]-[5]. Definitely, the pure EVs, also 
called as battery EVs, are the best solution to eliminate the 
vehicle emission problems. However, due to the limit capacity 
of the battery pack, the wide application is not possible at the 
current stage. Consequently, the hybrid electric vehicles 
(HEVs), which use both internal combustion engine (ICE) and 
electric motor for vehicle operation, dominate the automobile 
markets. Since the electric motors are involved for vehicle 
propulsion, on-board electricity generation is indispensible for 
most of the hybrid electric vehicles. As shown in Fig. 1, the 
free-piston generator, which consists of a free-piston engine 
and a linear generator, exhibits a high efficiency and flexibility 
for electricity production [6]-[8]. 

In recent years, various rotational permanent magnet (PM) 
generators have been developed for harnessing renewable 
energy and electric vehicles, because of their inherently high 
efficiency and high power density [9]-[10]. Among these 
rotational PM generators, including the doubly salient PM 
machine [11]-[25], PM hybrid machine [26]-[29], double-stator 
PM machine [30]-[31], flux-switching PM machine [32]-[34], 
flux-mnemonic PM machine [35]-[38] and transverse flux PM 
(TFPM) machine [39]-[40], the TFPM generator takes the 
definite merits of higher power density and higher efficiency 
than the others, as well as the uniqueness that it can be readily 

transformed from its radial-field morphology into the linear-
field morphology. However, it still suffers from a prominent 
drawback that it usually complies with a complicated structure 
and hence increases the manufacturing difficulty. 

The purpose of this paper is to propose a new TFPM linear 
generator for free-piston generators, which not only retains the 
inherent advantages of the existing TFPM machine, but also 
overcomes the problem of complicated structure. Firstly, the 
idea will be brought forward by using a 3-phase TFPM 
generator. Then, it will be extended to derive a new 2-phase 
TFPM linear generator. Finally, the configuration of this 
generator will be optimized to maximize the induced 
electromotive force (EMF) and minimize the cogging force. 
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Fig. 1. Free piston engine based generator. 

 

 
Fig. 2. Configuration of traditional TFPM machine. 



II. MACHINE DESIGN 

The traditional 3-phase TFPM machine configuration is 
depicted in Fig. 2. It adopts the double-stator arrangement with 
the rotor/mover sandwiched between the two stators. Its stator 
consists of U-shaped cores and windings on both sides of the 
mover. The U-shaped cores of the upper stator and the lower 
stator have a separation of a PM pole-pitch to form the flux 
path. Its mover consists of two rows of PMs and flux 
concentrators with nonmagnetic material in between. The stator 
has two sets of windings placed in the upper and lower stator 
core, respectively. Since their magnetic flux paths via the upper 
and lower U-shaped stator cores are orthogonal to the current 
flow of the armature winding, the magnetic loading is totally 
decoupled from the electric loading. Hence, the corresponding 
electric loading can be much higher than that of its 
longitudinal-flux counterpart.  The corresponding structure is 
very complicated such that its reliability and robustness are 
deteriorated, which are undesirable for the free-piston 
generator.  

In contrast, the proposed 3-phase TFPM linear generator is 
shown in Fig. 3, which the stator contains three segments of C-
shaped iron cores as embraced by armature windings, while the 
mover consists of 7 PM pole-pairs moving in between the C-
shaped iron cores. Because of the inherent decoupling nature in 
space between the electric circuit and the magnetic circuit, the 
proposed TFPM linear generator can be designed with a greater 
number of turns per coil and thus resulting with larger EMF 
magnitude and higher power density. Fig. 4 depicts the 
structure of C-shaped iron core. This C-shaped stator structure 
and the PM segments of the mover are simple and can be easily 
manufactured, thus solving the problem of complicated 
structure that usually occurs at conventional TFPM machines. 
The key design data of the proposed TFPM linear generator are 
listed in Table I. 

 
 

 
Fig. 3.  Proposed 3-phase linear TFPM generator. 
 

 
Fig. 4.  Structure of C-shaped iron core. 

 

 

TABLE I.   KEY DESIGN DATA 

Item Value 

D1 (mm) 100 

D2 (mm) 20 

H1 (mm) 70 

H2 (mm) 30 

Core width (mm) 45 

Mover length (mm) 350 

Tooth pitch (mm) 83.3 

Pole pitch (mm) 50 

Air-gap length (mm) 1.5 

No. of turns per phase 2100 

PM dimension (mm) 10 50 50   

Br (T) 1.1 

Hc (kA/m) 837 

 

III. MACHINE ANALYSIS 

The induced EMF of the proposed generator can be 
expressed as: 
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where  is the flux in the iron core, S is the cross-sectional area 
of iron core, and Bc is the flux density in the iron core. The 
cogging force can be expressed as: 

lx
B

W
o

a
co   

2

2




   (2) 

where Wco is the magnetic co-energy, x is the displacement in 
the axial direction, Ba is the flux density in the air-gap, o is 
the permeability of free space,  is air-gap length and l is the 
length of the mover. Thus, the cogging force can be written as 
[41]: 
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Provided that the flux density distribution is known, the 
induced EMF and cogging force can be determined by using 
(1) and (3), respectively. Although the magnetic circuits of the 
proposed generator is 3D in nature, the use of 3D finite element 
method (FEM) to perform analysis and optimization is too 
tedious and actually unnecessary [7]. Since the yoke of each 
stator of the proposed generator is equivalent to the tooth with 
a periodic boundary, the 2D FEM can be employed for 
analysis. Hence, the magnetic field distribution can be easily 
obtained as shown in Fig. 5. Then, the corresponding air-gap 
flux density waveform is deduced as shown in Fig. 6 in which 
the peak value can reach to 1.2 T, which confirm its merit of 
high power density. When the mover speed is set to be 1 m/s, 
the induced EMF can be simulated with the peak-to-peak value 
of phase-A equal to 315 V as depicted in Fig. 7. Also, the 
cogging force and normal force are simulated as depicted in 
Fig. 8 and Fig. 9. 



 
Fig. 5.  Magnetic field distribution of proposed 3-phase generator. 
 
 

 
Fig. 6.  Air-gap flux density waveform of proposed 3-phase generator. 
 
 

 
Fig. 7.  EMF waveform of proposed 3-phase generator. 
 
 

 
Fig. 8.  Cogging force waveform of proposed 3-phase generator. 

 

 

IV. MACHINE OPTIMIZATION 

The shortcomings of the mentioned 3-phase configuration 
are obvious: namely, the phase differences are not equal; the 
phase-B is highly distorted; the cogging force is too large. The 
major reason is due to the fact that the reluctance of the 
magnetic flux path via the middle iron core is greatly 
influenced by the adjacent iron cores. In order to solve this 
problem, the fourth C-shaped iron core is added while the 
mover is lengthened to 9 PM pole-pairs. Meanwhile, the first 
and the third armature windings are series-opposing connected 
together to form a new phase-A, while the second and the 
fourth armature windings are also series-opposing connected 
together to form a new phase-B. Thus, the adverse effect on the 
reluctance of the middle iron core due to the adjacent iron cores 
can be compensated from one another. The resulting 2-phase 
TFPM linear generator is shown in Fig. 10. 

Based on the same key data as the 3-phase counterpart, the 
induced EMF waveform and the cogging force waveform of 
this 2-phase TFPM linear generator are simulated as shown in 
Fig. 11 and Fig. 12, respectively. It can be observed that the 
peak-to-peak value of induced EMF is 588 V which is much 
larger than the 315V produced by the 3-phase one. Also, the 
cogging force is greatly suppressed, namely about a half of the 
3-phase one. 

 

Fig. 9. Normal force waveform of proposed 3-phase generator. 

 

 
Fig. 10.  Proposed 2-phase linear TFPM generator. 
 



 
Fig. 11.  EMF waveform of proposed 2-phase generator. 
 

 
Fig. 12.  Cogging force waveform of proposed 2-phase generator. 
 
 

 

 
Fig. 13.  Air-gap flux density waveforms of proposed 2-phase generator. 
 
 

 

 
Fig. 14.  EMF waveforms of proposed 2-phase generator. 
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Fig. 15.  Cogging force characteristics of proposed 2-phase generator. 
 

 
Fig. 16.  Optimized EMF waveforms of proposed 2-phase generator. 
 

 
Fig. 17.  Optimized cogging waveform of proposed 2-phase generator. 

 

There are two important indicators of this linear generator: 
The first one is the amplitude and shape of the induced EMF 
waveforms which reflect the power quality of electricity 
generation; the second one is the value of cogging torque 
waveform which reflects the usefulness of smooth free-piston 
generator operation. So, the optimization of the proposed 2-
phase generator focuses on maximizing the amplitude and 
symmetry of the induced EMF and on minimizing the cogging 
force. Since both indicators are mainly affected by the flux 
density, the PM width and the core width are selected as the 
variable parameters for optimization. 

Firstly, the PM width varies from 46 mm (92% of nominal) 
to 54 mm (108% of nominal) while the core width is kept 
unchanged. The corresponding air-gap flux density waveforms 
are depicted in Fig. 13. Hence, the EMF waveforms are 



obtained as shown in Fig. 14. It can be found that both the 
amplitude and symmetry generally increase with the PM width. 
The width of 52 mm is considered to be optimal since an 
additional increase of the PM width does not offer significant 
additional improvement. On the other hand, the cogging force 
characteristics are depicted in Fig. 15. It illustrates that the 
corresponding peak value decreases from 440 N to 70 N when 
the PM width increases from 46 mm to 52 mm. This 
phenomenon can be reflected from Fig. 13 that the peak value 
of air-gap flux densities decreases gradually as the PM width 
increases from 46 mm to 52 mm. 

Secondly, the core width is varied while the PM width is 
kept constant at 52 mm. It can be deduced that the optimal core 
width is 43 mm. So, when picking up these two optimal 
parameters, the optimized EMF waveforms of the proposed 2-
phase generator are depicted in Fig. 16. It can be observed that 
these waveforms are very symmetric in trapezoidal form and 
have a phase difference of approximately 90. The 
corresponding peak-to-peak value can achieve 630 V, which is 
better than the non-optimized one (588 V) and much greater 
than the 3-phase counterpart (315 V). These EMF waveforms 
are highly attractive for on-board power generation, since their 
rectified version can readily be converted for battery charging. 
Finally, the optimized cogging force is shown in Fig. 17. The 
corresponding peak value is only 35% of its 3-phase 
counterpart. 

V. CONCLUSION 

In this paper, a new 2-phase TFPM linear generator has 
been proposed and optimized for free-piston generators. This 
generator not only retains the merits of the existing TFPM 
machine, but also offers a unique simple structure that can be 
easily fabricated and assembled. By fine tuning the PM width 
and core width of the proposed generator, the optimized EMF 
can reach to a high voltage amplitude while exhibit a 
symmetric and trapezoidal waveform which is highly desirable 
for power processing. Also, the optimized cogging force is low 
enough to effectively operate in the free-piston generator. 
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