97 research outputs found

    Multi-Stability in Monotone Input/Output Systems

    Full text link
    This paper studies the emergence of multi-stability and hysteresis in those systems that arise, under positive feedback, starting from monotone systems with well-defined steady-state responses. Such feedback configurations appear routinely in several fields of application, and especially in biology. Characterizations of global stability behavior are stated in terms of easily checkable graphical conditions. An example of a signaling cascade under positive feedback is presented.Comment: See http://www.math.rutgers.edu/~sontag for related work; to appear in Systems and Control Letter

    Monotone Control Systems

    Full text link
    Monotone systems constitute one of the most important classes of dynamical systems used in mathematical biology modeling. The objective of this paper is to extend the notion of monotonicity to systems with inputs and outputs, a necessary first step in trying to understand interconnections, especially including feedback loops, built up out of monotone components. Basic definitions and theorems are provided, as well as an application to the study of a model of one of the cell's most important subsystems.Comment: See http://www.math.rutgers.edu/~sontag/ for related wor

    A General Model of Opinion Dynamics with Tunable Sensitivity

    Full text link
    We introduce a general model of continuous-time opinion dynamics for an arbitrary number of agents that communicate over a network and form real-valued opinions about an arbitrary number of options. Drawing inspiration from models in biology, physics, and social psychology, we apply a sigmoidal saturating function to inter-agent and intra-agent exchanges of opinions. The saturating function is the only nonlinearity in the model, yet we prove how it yields rapid and reliable formation of consensus, dissensus, and opinion cascades as a function of just a few parameters. We further show how the network opinion dynamics exhibit both robustness to disturbance and ultrasensitivity to inputs. We design feedback dynamics for system parameters that enable active tuning of implicit thresholds in opinion formation for sensitivity to inputs, robustness to changes in input, opinion cascades, and flexible transitions between consensus and dissensus. The general model can be used for systematic control design in a range of engineering problems including network systems, multi-robot coordination, task allocation, and decision making for spatial navigation. It can also be used for systematic examination of questions in biology and social science ranging from cognitive control and networks in the brain, to resilience in collective animal behavior to changing environmental conditions, to information spreading and political polarization in social networks

    Differential analysis of nonlinear systems: Revisiting the pendulum example

    Get PDF
    Differential analysis aims at inferring global properties of nonlinear behaviors from the local analysis of the linearized dynamics. The paper motivates and illustrates the use of differential analysis on the nonlinear pendulum model, an archetype example of nonlinear behavior. Special emphasis is put on recent work by the authors in this area, which includes a differential Lyapunov framework for contraction analysis and the concept of differential positivity

    Mechanical Control of Sensory Hair-Bundle Function

    Get PDF
    Hair bundles detect sound in the auditory system, head position and rotation in the vestibular system, and fluid flow in the lateral-­‐‑line system. To do so, bundles respond to periodic, static, and hydrodynamic forces contingent upon the receptor organs in which they are situated. As the mechanosensory function of a hair bundle varies, so too do the mechanical properties of the bundle and its microenvironment. Hair bundles range in height from 1 ΌΌm to 100 ΌΌm and in stiffness from 100 ΌΌN·∙m-­‐‑1 to 10,000 ΌΌN·∙m-­‐‑1. They are composed of actin-­‐‑filled, hypertrophic microvilli—stereocilia—that number from fewer than 20 through more than 300 per bundle. In addition, bundles may or may not possess one true cilium, the kinocilium. Hair bundles differ in shape across organs and organisms: they may be isodiametric, fan-­‐‑shaped, or V-­‐‑shaped. Depending on the organ in which they occur, bundles may be free-­‐‑standing or they may be coupled to a tectorial membrane, otolithic membrane, cupula, or sallet. Because all hair bundles are comprised of similar molecular components, their distinct mechanosensory functions may instead be regulated by their mechanical loads. Dynamical-­‐‑systems analysis provides mathematical predictions of hair-­‐‑bundle behavior. One such model captures the effects of mechanical loading on bundle function in a state diagram. A mechanical-­‐‑load clamp permits exploration of this state diagram by robustly controlling the loads—constant force, load stiffness, virtual drag, and virtual mass—imposed on a hair bundle. Upon changes in these mechanical parameters, the bundle’s response characteristics alter. Subjected to particular control parameters, a bundle may oscillate spontaneously or remain quiescent. It may respond nonlinearly to periodic stimuli with high sensitivity, sharp frequency tuning, and easy entrainment; or it may respond linearly with low sensitivity, broad tuning, and reluctant entrainment. The bundle’s response to a force pulse may resemble that of an edge-­‐‑detection system or a low-­‐‑pass filter. Finally, a bundle from an amphibian vestibular organ can operate in a manner qualitatively similar to that from a mammalian auditory organ, implying an essential similarity between hair bundles. The bifurcation near which a bundle’s operating point resides controls its function: the state diagram provides a functional map of mechanosensory modalities. Auditory function is best tuned near a supercritical Hopf bifurcation, whereas vestibular function is captured by a subcritical Hopf bifurcation and a cusp bifurcation. Within the proposed region vestibular responsiveness, a hair bundle exhibits mechanical excitability analogous to the electrical excitability of neurons. This behavior implies for the first time a direct relationship between the mechanical behaviors of sensory organelles and the electrical behaviors of afferent neurons. Man-­‐‑made detectors function in limited capacities, each designed for a unique purpose. A single hair bundle, on the other hand, evolved to serve multiple purposes with the requirement of only two functional traits: adaptation and nonlinear channel gating. The remarkable conservation of these capabilities thus provides unique insight into the evolution of sensory systems

    Effects of Repulsive Coupling in Ensembles of Excitable Elements

    Get PDF
    Die vorliegende Arbeit behandelt die kollektive Dynamik identischer Klasse-I-anregbarer Elemente. Diese können im Rahmen der nichtlinearen Dynamik als Systeme nahe einer Sattel-Knoten-Bifurkation auf einem invarianten Kreis beschrieben werden. Der Fokus der Arbeit liegt auf dem Studium aktiver Rotatoren als Prototypen solcher Elemente. In Teil eins der Arbeit besprechen wir das klassische Modell abstoßend gekoppelter aktiver Rotatoren von Shinomoto und Kuramoto und generalisieren es indem wir höhere Fourier-Moden in der internen Dynamik der Rotatoren berĂŒcksichtigen. Wir besprechen außerdem die mathematischen Methoden die wir zur Untersuchung des Aktive-Rotatoren-Modells verwenden. In Teil zwei untersuchen wir Existenz und StabilitĂ€t periodischer Zwei-Cluster-Lösungen fĂŒr generalisierte aktive Rotatoren und beweisen anschließend die Existenz eines Kontinuums periodischer Lösungen fĂŒr eine Klasse Watanabe-Strogatz-integrabler Systeme zu denen insbesondere das klassische Aktive-Rotatoren-Modell gehört und zeigen dass (i) das Kontinuum eine normal-anziehende invariante Mannigfaltigkeit bildet und (ii) eine der auftretenden periodischen Lösungen Splay-State-Dynamik besitzt. Danach entwickeln wir mit Hilfe der Averaging-Methode eine Störungstheorie fĂŒr solche Systeme. Mit dieser können wir RĂŒckschlĂŒsse auf die asymptotische Dynamik des generalisierten Aktive-Rotatoren-Modells ziehen. Als Hauptergebnis stellen wir fest dass sowohl periodische Zwei-Cluster-Lösungen als auch Splay States robuste Lösungen fĂŒr das Aktive-Rotatoren-Modell darstellen. Wir untersuchen außerdem einen "StabilitĂ€tstransfer" zwischen diesen Lösungen durch sogenannte Broken-Symmetry States. In Teil drei untersuchen wir Ensembles gekoppelter Morris-Lecar-Neuronen und stellen fest, dass deren asymptotische Dynamik der der aktiven Rotatoren vergleichbar ist was nahelegt dass die Ergebnisse aus Teil zwei ein qualitatives Bild fĂŒr solch kompliziertere und realistischere Neuronenmodelle liefern.We study the collective dynamics of class I excitable elements, which can be described within the theory of nonlinear dynamics as systems close to a saddle-node bifurcation on an invariant circle. The focus of the thesis lies on the study of active rotators as a prototype for such elements. In part one of the thesis, we motivate the classic model of repulsively coupled active rotators by Shinomoto and Kuramoto and generalize it by considering higher-order Fourier modes in the on-site dynamics of the rotators. We also discuss the mathematical methods which our work relies on, in particular the concept of Watanabe-Strogatz (WS) integrability which allows to describe systems of identical angular variables in terms of Möbius transformations. In part two, we investigate the existence and stability of periodic two-cluster states for generalized active rotators and prove the existence of a continuum of periodic orbits for a class of WS-integrable systems which includes, in particular, the classic active rotator model. We show that (i) this continuum constitutes a normally attracting invariant manifold and that (ii) one of the solutions yields splay state dynamics. We then develop a perturbation theory for such systems, based on the averaging method. By this approach, we can deduce the asymptotic dynamics of the generalized active rotator model. As a main result, we find that periodic two-cluster states and splay states are robust periodic solutions for systems of identical active rotators. We also investigate a 'transfer of stability' between these solutions by means of so-called broken-symmetry states. In part three, we study ensembles of higher-dimensional class I excitable elements in the form of Morris-Lecar neurons and find the asymptotic dynamics of such systems to be similar to those of active rotators, which suggests that our results from part two yield a suitable qualitative description for more complicated and realistic neural models

    Principles and theory of protein-based pattern formation

    Get PDF
    Biological systems perform functions by the orchestrated interplay of many small components without a "conductor." Such self-organization pervades life on many scales, from the subcellular level to populations of many organisms and whole ecosystems. On the intracellular level, protein-based pattern formation coordinates and instructs functions like cell division, differentiation and motility. A key feature of protein-based pattern formation is that the total numbers of the involved proteins remain constant on the timescale of pattern formation. The overarching theme of this thesis is the profound impact of this mass-conservation property on pattern formation and how one can harness mass conservation to understand the underlying physical principles. The central insight is that changes in local densities shift local reactive equilibria, and thus induce concentration gradients which, in turn, drive diffusive transport of mass. For two-component systems, this dynamic interplay can be captured by simple geometric objects in the (low-dimensional) phase space of chemical concentrations. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. Moreover, we introduce the notion of regional (in)stabilities, which allows one to characterize the dynamics in the highly nonlinear regime reveals an inherent connection between Turing instability and stimulus-induced pattern formation. The insights gained for conceptual two-component systems can be generalized to systems with more components and several conserved masses. In the minimal setting of two diffusively coupled "reactors," the full dynamics can be embedded in the phase-space of redistributed masses where the phase space flow is organized by surfaces of local reactive equilibria. Building on the phase-space analysis for two component systems, we develop a new approach to the important open problem of wavelength selection in the highly nonlinear regime. We show that two-component reaction–diffusion systems always exhibit uninterrupted coarsening (the continual growth of the characteristic length scale) of patterns if they are strictly mass conserving. Selection of a finite wavelength emerges due to weakly broken mass-conservation, or coupling to additional components, which counteract and stop the competition instability that drives coarsening. For complex dynamical phenomena like wave patterns and the transition to spatiotemporal chaos, an analysis in terms of local equilibria and their stability properties provides a powerful tool to interpret data from numerical simulations and experiments, and to reveal the underlying physical mechanisms. In collaborations with different experimental labs, we studied the Min system of Escherichia coli. A central insight from these investigations is that bulk-surface coupling imparts a strong dependence of pattern formation on the geometry of the spatial confinement, which explains the qualitatively different dynamics observed inside cells compared to in vitro reconstitutions. By theoretically studying the polarization machinery in budding yeast and testing predictions in collaboration with experimentalists, we found that this functional module implements several redundant polarization mechanisms that depend on different subsets of proteins. Taken together, our work reveals unifying principles underlying biological self-organization and elucidates how microscopic interaction rules and physical constraints collectively lead to specific biological functions.Biologische Systeme fĂŒhren Funktionen durch das orchestrierte Zusammenspiel vieler kleiner Komponenten ohne einen "Dirigenten" aus. Solche Selbstorganisation durchdringt das Leben auf vielen Skalen, von der subzellulĂ€ren Ebene bis zu Populationen vieler Organismen und ganzen Ökosystemen. Auf der intrazellulĂ€ren Ebene koordiniert und instruieren proteinbasierte Muster Funktionen wie Zellteilung, Differenzierung und MotilitĂ€t. Ein wesentliches Merkmal der proteinbasierten Musterbildung ist, dass die Gesamtzahl der beteiligten Proteine auf der Zeitskala der Musterbildung konstant bleibt. Das ĂŒbergreifende Thema dieser Arbeit ist es, den tiefgreifenden Einfluss dieser Massenerhaltung auf die Musterbildung zu untersuchen und Methoden zu entwickeln, die Massenerhaltung nutzen, um die zugrunde liegenden physikalischen Prinzipien von proteinbasierter Musterbildung zu verstehen. Die zentrale Erkenntnis ist, dass Änderungen der lokalen Dichten lokale reaktive Gleichgewichte verschieben und somit Konzentrationsgradienten induzieren, die wiederum den diffusiven Transport von Masse antreiben. FĂŒr Zweikomponentensysteme kann dieses dynamische Wechselspiel durch einfache geometrische Objekte im (niedrigdimensionalen) Phasenraum der chemischen Konzentrationen erfasst werden. Auf dieser Phasenraumebene können physikalische Erkenntnisse durch geometrische Kriterien und grafische Konstruktionen gewonnen werden. DarĂŒber hinaus fĂŒhren wir den Begriff der regionalen (In-)stabilitĂ€t ein, der es erlaubt, die Dynamik im hochgradig nichtlinearen Regime zu charakterisieren und einen inhĂ€renten Zusammenhang zwischen Turing-InstabilitĂ€t und stimulusinduzierter Musterbildung aufzuzeigen. Die fĂŒr konzeptionelle Zweikomponentensysteme gewonnenen Erkenntnisse können auf Systeme mit mehr Komponenten und mehreren erhaltenen Massen verallgemeinert werden. In der minimalen Fassung von zwei diffusiv gekoppelten "Reaktoren" kann die gesamte Dynamik in den Phasenraum umverteilter Massen eingebettet werden, wobei der Phasenraumfluss durch FlĂ€chen lokaler reaktiver Gleichgewichte organisiert wird. Aufbauend auf der Phasenraumanalyse fĂŒr Zweikomponentensysteme entwickeln wir einen neuen Ansatz fĂŒr die wichtige offene Fragestellung der WellenĂ€ngenselektion im hochgradig nichtlinearen Regime. Wir zeigen, dass "coarsening" (das stetige wachsen der charakteristischen LĂ€ngenskala) von Mustern in Zweikomponentensystemen nie stoppt, wenn sie exakt massenerhaltend sind. Die Selektion einer endlichen WellenlĂ€nge entsteht durch schwach gebrochene Massenerhaltung oder durch Kopplung an zusĂ€tzliche Komponenten. Diese Prozesse wirken der Masseumverteilung, die coarsening treibt, entgegen und stoppen so das coarsening. Bei komplexen dynamischen PhĂ€nomenen wie Wellenmustern und dem Übergang zu raumzeitlichen Chaos bietet eine Analyse in Bezug auf lokale Gleichgewichte und deren StabilitĂ€tseigenschaften ein leistungsstarkes Werkzeug, um Daten aus numerischen Simulationen und Experimenten zu interpretieren und die zugrunde liegenden physikalischen Mechanismen aufzudecken. In Zusammenarbeit mit verschiedenen experimentellen Labors haben wir das Min-System von Escherichia coli untersucht. Eine zentrale Erkenntnis aus diesen Untersuchungen ist, dass die Kopplung zwischen Volumen und OberflĂ€che zu einer starken AbhĂ€ngigkeit der Musterbildung von der rĂ€umlichen Geometrie fĂŒhrt. Das erklĂ€rt die qualitativ unterschiedliche Dynamik, die in Zellen im Vergleich zu in vitro Rekonstitutionen beobachtet wird. Durch die theoretische Untersuchung der Polarisationsmaschinerie in Hefezellen, kombiniert mit experimentellen Tests theoretischer Vorhersagen, haben wir herausgefunden, dass dieses Funktionsmodul mehrere redundante Polarisationsmechanismen implementiert, die von verschiedenen Untergruppen von Proteinen abhĂ€ngen. Zusammengenommen beleuchtet unsere Arbeit die vereinheitlichenden Prinzipien, die der intrazellulĂ€ren Selbstorganisation zugrunde liegen, und zeigt, wie mikroskopische Interaktionsregeln und physikalische Bedingungen gemeinsam zu spezifischen biologischen Funktionen fĂŒhren
    • 

    corecore