530,049 research outputs found
A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction
Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition
Uncertainty Quantification in Remaining Useful Life of Aerospace Components using State Space Models and Inverse FORM
This paper investigates the use of the inverse first-order reliability method (inverse- FORM) to quantify the uncertainty in the remaining useful life (RUL) of aerospace components. The prediction of remaining useful life is an integral part of system health prognosis, and directly helps in online health monitoring and decision-making. However, the prediction of remaining useful life is affected by several sources of uncertainty, and therefore it is necessary to quantify the uncertainty in the remaining useful life prediction. While system parameter uncertainty and physical variability can be easily included in inverse-FORM, this paper extends the methodology to include: (1) future loading uncertainty, (2) process noise; and (3) uncertainty in the state estimate. The inverse-FORM method has been used in this paper to (1) quickly obtain probability bounds on the remaining useful life prediction; and (2) calculate the entire probability distribution of remaining useful life prediction, and the results are verified against Monte Carlo sampling. The proposed methodology is illustrated using a numerical example
Integrated Bayesian Framework for Remaining Useful Life Prediction.
International audienceIn this paper, a data-driven method for remaining useful life (RUL) prediction is presented. The method learns the relation between acquired sensor data and end of life time (EOL) to predict the RUL. The proposed method extracts monotonic trends from offline sensor signals, which are used to build reference models. From online signals the method represents the uncertainty about the current status, using discrete Bayesian filter. Finally, the method predicts RUL of the monitored component using integrated method based on K-nearest neighbor (k-NN) and Gaussian process regression (GPR). The performance of the algorithm is demonstrated using two real data sets from NASA Ames prognostics data repository. The results show that the algorithm obtain good results for both application
Remaining Useful Life Estimation in Prognosis: An Uncertainty Propagation Problem
The estimation of remaining useful life is significant in the context of prognostics and health monitoring, and the prediction of remaining useful life is essential for online operations and decision-making. However, it is challenging to accurately predict the remaining useful life in practical aerospace applications due to the presence of various uncertainties that affect prognostic calculations, and in turn, render the remaining useful life prediction uncertain. It is challenging to identify and characterize the various sources of uncertainty in prognosis, understand how each of these sources of uncertainty affect the uncertainty in the remaining useful life prediction, and thereby compute the overall uncertainty in the remaining useful life prediction. In order to achieve these goals, this paper proposes that the task of estimating the remaining useful life must be approached as an uncertainty propagation problem. In this context, uncertainty propagation methods which are available in the literature are reviewed, and their applicability to prognostics and health monitoring are discussed
Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging
A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications
Towards Prognostics of Electrolytic Capacitors
A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors
Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks
In industrial applications, nearly half the failures of motors are caused by
the degradation of rolling element bearings (REBs). Therefore, accurately
estimating the remaining useful life (RUL) for REBs are of crucial importance
to ensure the reliability and safety of mechanical systems. To tackle this
challenge, model-based approaches are often limited by the complexity of
mathematical modeling. Conventional data-driven approaches, on the other hand,
require massive efforts to extract the degradation features and construct
health index. In this paper, a novel online data-driven framework is proposed
to exploit the adoption of deep convolutional neural networks (CNN) in
predicting the RUL of bearings. More concretely, the raw vibrations of training
bearings are first processed using the Hilbert-Huang transform (HHT) and a
novel nonlinear degradation indicator is constructed as the label for learning.
The CNN is then employed to identify the hidden pattern between the extracted
degradation indicator and the vibration of training bearings, which makes it
possible to estimate the degradation of the test bearings automatically.
Finally, testing bearings' RULs are predicted by using a -support
vector regression model. The superior performance of the proposed RUL
estimation framework, compared with the state-of-the-art approaches, is
demonstrated through the experimental results. The generality of the proposed
CNN model is also validated by transferring to bearings undergoing different
operating conditions
Remaining Useful Life Prediction of Rolling Element Bearings Using Supervised Machine Learning
Components of rotating machines, such as shafts, bearings and gears are subject to performance degradation, which if left unattended could lead to failure or breakdown of the entire system. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes a combination of two supervised machine learning techniques; namely, the regression model and multilayer artificial neural network model, to predict the remaining useful life of rolling element bearings. Root mean square and Kurtosis were analyzed to define the bearing failure stages. The proposed methodology was validated through two case studies involving vibration measurements of an operational wind turbine gearbox and a split cylindrical roller bearing in a test rig
Real-Time Prognostics of a Rotary Valve Actuator
Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics
- …
