39,462 research outputs found

    Soft Handover scheme for WSN nodes using media independent handover functions

    Get PDF
    The present wireless networks are equipped with multiple radio links and operate in a collaborative way to enable continuous data transfer even when any link goes down. The IEEE 802.21 is a standard to provide continuous wireless connectivity between heterogeneous link technologies using media independent handover functions as MIHF. The standard supports handover between IEEE 802.11, IEEE 802.16, 3GPP cellular networks. The wireless sensor networks (WSN) based on IEEE 802.15.4 consists of sensors to monitor various physical or physiological activities and to transfer the collected data to the remote controlling station using a short range radio. But in this case if the wireless node moves out of each other's communication range data transfer is not possible. So in this paper, the WSN communication protocol is made as a part of the IEEE 802.21 stack to explore the handover feature offered by the standard. The proposed stack has an internal partition to make WSN protocol to operate independently with other similar modules as long as they are in range, and the MIH function gets triggered by the application when the home networks are not available thus to provide handover from other link interfaces. The proposed hardware has IEEE 802.11, IEEE 802.16, and 3GPP links which are operated by the MIH functions along with the IEEE 802.15.4 interface. So the WSN modules are provisioned to have connectivity from multiple radio interfaces even if they move out of the coverage range from the current point of access. The proposed primitives for handover between WSN and other links are efficient in providing reliable handoff. Keywords: IEEE 802.21, Media independent handover, IEEE 802.15.4, Wireless sensor network

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Developing an Efficient DMCIS with Next-Generation Wireless Networks

    Get PDF
    The impact of extreme events across the globe is extraordinary which continues to handicap the advancement of the struggling developing societies and threatens most of the industrialized countries in the globe. Various fields of Information and Communication Technology have widely been used for efficient disaster management; but only to a limited extent though, there is a tremendous potential for increasing efficiency and effectiveness in coping with disasters with the utilization of emerging wireless network technologies. Early warning, response to the particular situation and proper recovery are among the main focuses of an efficient disaster management system today. Considering these aspects, in this paper we propose a framework for developing an efficient Disaster Management Communications and Information System (DMCIS) which is basically benefited by the exploitation of the emerging wireless network technologies combined with other networking and data processing technologies.Comment: 6 page

    A Secure Lightweight Approach of Node Membership Verification in Dense HDSN

    Full text link
    In this paper, we consider a particular type of deployment scenario of a distributed sensor network (DSN), where sensors of different types and categories are densely deployed in the same target area. In this network, the sensors are associated with different groups, based on their functional types and after deployment they collaborate with one another in the same group for doing any assigned task for that particular group. We term this sort of DSN as a heterogeneous distributed sensor network (HDSN). Considering this scenario, we propose a secure membership verification mechanism using one-way accumulator (OWA) which ensures that, before collaborating for a particular task, any pair of nodes in the same deployment group can verify each other-s legitimacy of membership. Our scheme also supports addition and deletion of members (nodes) in a particular group in the HDSN. Our analysis shows that, the proposed scheme could work well in conjunction with other security mechanisms for sensor networks and is very effective to resist any adversary-s attempt to be included in a legitimate group in the network.Comment: 6 page
    • …
    corecore