5 research outputs found

    Towards improved design and evaluation of epileptic seizure predictors

    Get PDF
    Abstract—Objective: Key issues in the epilepsy seizure prediction research are (1) the reproducibility of results (2) the inability to compare multiple approaches directly. To overcome these problems, the Seizure Prediction Challenge was organized on Kaggle.com. It aimed at establishing benchmarks on a dataset with predefined train, validation and test sets. Our main objective is to analyse the competition format, and to propose improvements, which would facilitate a better comparison of algorithms. The second objective is to present a novel deep learning approach to seizure prediction and compare it to other commonly used methods using patient centered metrics. Methods: We used the competition’s datasets to illustrate the effects of data contamination. Having better data partitions, we compared three types of models in terms of different objectives. Results: We found that correct selection of test samples is crucial when evaluating the performance of seizure forecasting models. Moreover, we showed that models, which achieve state-of-the-art performance with respect to commonly used AUC, sensitivity and specificity metrics, may not yet be suitable for practical usage because of low precision scores. Conclusion: Correlation between validation and test datasets used in the competition limited its scientific value. Significance: Our findings provide guidelines which allow for a more objective evaluation of seizure prediction models

    Classification of EEG signals of user states in gaming using machine learning

    Get PDF
    In this research, brain activity of user states was analyzed using machine learning algorithms. When a user interacts with a computer-based system including playing computer games like Tetris, he or she may experience user states such as boredom, flow, and anxiety. The purpose of this research is to apply machine learning models to Electroencephalogram (EEG) signals of three user states -- boredom, flow and anxiety -- to identify and classify the EEG correlates for these user states. We focus on three research questions: (i) How well do machine learning models like support vector machine, random forests, multinomial logistic regression, and k-nearest neighbor classify the three user states -- Boredom, Flow, and Anxiety? (ii) Can we distinguish the flow state from other user states using machine learning models? (iii) What are the essential components of EEG signals for classifying the three user states? To extract the critical components of EEG signals, a feature selection method known as minimum redundancy and maximum relevance method was implemented. An average accuracy of 85 % is achieved for classifying the three user states by using the support vector machine classifier --Abstract, page iii

    Advanced Learning Methodologies for Biomedical Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. October 2017. Major: Electrical/Computer Engineering. Advisor: Vladimir Cherkassky. 1 computer file (PDF); ix, 109 pages.There has been a dramatic increase in application of statistical and machine learning methods for predictive data-analytic modeling of biomedical data. Most existing work in this area involves application of standard supervised learning techniques. Typical methods include standard classification or regression techniques, where the goal is to estimate an indicator function (classification decision rule) or real-valued function of input variables, from finite training sample. However, real-world data often contain additional information besides labeled training samples. Incorporating this additional information into learning (model estimation) leads to nonstandard/advanced learning formalizations that represent extensions of standard supervised learning. Recent examples of such advanced methodologies include semi-supervised learning (or transduction) and learning through contradiction (or Universum learning). This thesis investigates two new advanced learning methodologies along with their biomedical applications. The first one is motivated by modeling complex survival data which can incorporate future, censored, or unknown data, in addition to (traditional) labeled training data. Here we propose original formalization for predictive modeling of survival data, under the framework of Learning Using Privileged Information (LUPI) proposed by Vapnik. Survival data represents a collection of time observations about events. Our modeling goal is to predict the state (alive/dead) of a subject at a pre-determined future time point. We explore modeling of survival data as binary classification problem that incorporates additional information (such as time of death, censored/uncensored status, etc.) under LUPI framework. Then we propose two advanced constructive Support Vector Machine (SVM)-based formulations: SVM+ and Loss-Order SVM (LO-SVM). Empirical results using simulated and real-life survival data indicate that the proposed LUPI-based methods are very effective (versus classical Cox regression) when the survival time does not follow classical probabilistic assumptions. Second advanced methodology investigates a new learning paradigm for classification called Group Learning. This approach is motivated by modeling high-dimensional data when the number of input features is much larger than the number of training samples. There are two main approaches to solving such ill-posed problems: (a) selecting a small number of informative features via feature selection; (b) using all features but imposing additional complexity constraints, e.g., ridge regression, SVM, LASSO, etc. The proposed Group Learning method takes a different approach, by splitting all features into many (t) groups, and then estimating a classifier in reduced space (of dimensionality d/t). This approach effectively uses all features, but implements training in a lower-dimensional input space. Note that the formation of groups reflects application-domain knowledge. For example, in classifying of two-dimensional images represented as a set of pixels (original high-dimensional input space), appropriate groups can be formed by grouping adjacent pixels or “local patches” because adjacent pixels are known to be highly correlated. We provide empirical validation of this new methodology for two real-life applications: (a) handwritten digit recognition, and (b) predictive classification of univariate signals, e.g., prediction of epileptic seizures from intracranial electroencephalogram (iEEG) signal. Prediction of epileptic seizures is particularly challenging, due to highly unbalanced data (just 4–5 observed seizures) and patient-specific modeling. In a joint project with Mayo Clinic, we have incorporated the Group Learning approach into an SVM-based system for seizure prediction. This system performs subject-specific modeling and achieves robust prediction performance

    Optimizing AI at the Edge: from network topology design to MCU deployment

    Get PDF
    The first topic analyzed in the thesis will be Neural Architecture Search (NAS). I will focus on two different tools that I developed, one to optimize the architecture of Temporal Convolutional Networks (TCNs), a convolutional model for time-series processing that has recently emerged, and one to optimize the data precision of tensors inside CNNs. The first NAS proposed explicitly targets the optimization of the most peculiar architectural parameters of TCNs, namely dilation, receptive field, and the number of features in each layer. Note that this is the first NAS that explicitly targets these networks. The second NAS proposed instead focuses on finding the most efficient data format for a target CNN, with the granularity of the layer filter. Note that applying these two NASes in sequence allows an "application designer" to minimize the structure of the neural network employed, minimizing the number of operations or the memory usage of the network. After that, the second topic described is the optimization of neural network deployment on edge devices. Importantly, exploiting edge platforms' scarce resources is critical for NN efficient execution on MCUs. To do so, I will introduce DORY (Deployment Oriented to memoRY) -- an automatic tool to deploy CNNs on low-cost MCUs. DORY, in different steps, can manage different levels of memory inside the MCU automatically, offload the computation workload (i.e., the different layers of a neural network) to dedicated hardware accelerators, and automatically generates ANSI C code that orchestrates off- and on-chip transfers with the computation phases. On top of this, I will introduce two optimized computation libraries that DORY can exploit to deploy TCNs and Transformers on edge efficiently. I conclude the thesis with two different applications on bio-signal analysis, i.e., heart rate tracking and sEMG-based gesture recognition
    corecore