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Abstract

There has been a dramatic increase in application of statistical and machine learning

methods for predictive data-analytic modeling of biomedical data. Most existing work

in this area involves application of standard supervised learning techniques. Typical

methods include standard classification or regression techniques, where the goal is to es-

timate an indicator function (classification decision rule) or real-valued function of input

variables, from finite training sample. However, real-world data often contain additional

information besides labeled training samples. Incorporating this additional information

into learning (model estimation) leads to nonstandard/advanced learning formalizations

that represent extensions of standard supervised learning. Recent examples of such ad-

vanced methodologies include semi-supervised learning (or transduction) and learning

through contradiction (or Universum learning).

This thesis investigates two new advanced learning methodologies along with their

biomedical applications. The first one is motivated by modeling complex survival data

which can incorporate future, censored, or unknown data, in addition to (traditional)

labeled training data. Here we propose original formalization for predictive modeling

of survival data, under the framework of Learning Using Privileged Information (LUPI)

proposed by Vapnik [1, 2]. Survival data represents a collection of time observations

about events. Our modeling goal is to predict the state (alive/dead) of a subject at

a pre-determined future time point. We explore modeling of survival data as binary

classification problem that incorporates additional information (such as time of death,

censored/uncensored status, etc.) under LUPI framework. Then we propose two ad-

vanced constructive Support Vector Machine (SVM)-based formulations: SVM+ and

Loss-Order SVM (LO-SVM). Empirical results using simulated and real-life survival data

indicate that the proposed LUPI-based methods are very effective (versus classical Cox

regression) when the survival time does not follow classical probabilistic assumptions.
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ABSTRACT iv

Second advanced methodology investigates a new learning paradigm for classification

called Group Learning. This approach is motivated by modeling high-dimensional data

when the number of input features is much larger than the number of training samples.

There are two main approaches to solving such ill-posed problems: (a) selecting a small

number of informative features via feature selection; (b) using all features but imposing

additional complexity constraints, e.g., ridge regression, SVM, LASSO, etc. The pro-

posed Group Learning method takes a different approach, by splitting all features into

many (t) groups, and then estimating a classifier in reduced space (of dimensionality

d/t). This approach effectively uses all features, but implements training in a lower-

dimensional input space. Note that the formation of groups reflects application-domain

knowledge. For example, in classifying of two-dimensional images represented as a set

of pixels (original high-dimensional input space), appropriate groups can be formed by

grouping adjacent pixels or “local patches” because adjacent pixels are known to be

highly correlated. We provide empirical validation of this new methodology for two

real-life applications: (a) handwritten digit recognition, and (b) predictive classification

of univariate signals, e.g., prediction of epileptic seizures from intracranial electroen-

cephalogram (iEEG) signal. Prediction of epileptic seizures is particularly challenging,

due to highly unbalanced data (just 4–5 observed seizures) and patient-specific modeling.

In a joint project with Mayo Clinic, we have incorporated the Group Learning approach

into an SVM-based system for seizure prediction. This system performs subject-specific

modeling and achieves robust prediction performance.
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Chapter 1

General Introduction

1.1. Motivations

Learning is the process of estimating an unknown (input, output) dependency from

a limited number of observations [3, 4]. Various applications in engineering, statistics,

computer science, health sciences, and social sciences are concerned with estimating

“good” predictive models from the available historical data (or training data), in order

to use this model for predicting future samples (or test data). Predictive learning is of

particular interest because it can objectively define the “usefulness” of the estimated

model by predictive (generalization) capabilities.

Most existing work on predictive data analytics involves development and applica-

tion of standard supervised learning techniques. Typical methods include standard clas-

sification or regression techniques, where the goal is to estimate an indicator function

(classification decision rule) or real-valued function of input variables, from finite training

sample. However, real-world data often contains additional information (besides labeled

training samples). Incorporating this additional information into learning (model estima-

tion) leads to non-standard/advanced learning formalizations that represent extensions

of standard supervised learning. Recent examples of such advanced methodologies in-

clude semi-supervised learning (or transduction) and learning through contradiction (or

Universum learning). This thesis investigates two new advanced learning methodologies

along with their biomedical applications.

The first contribution is a new mathematical formalization for modeling survival

data which can incorporate future, censored, or unknown data, in addition to (tra-

ditional) labeled training data. Here we propose original formalization for predictive

1



1.2. TECHNICAL CONTRIBUTIONS 2

modeling of survival data, under the framework of Learning Using Privileged Informa-

tion (LUPI) proposed by Vapnik [1, 2]. Survival data represents a collection of time

observations about events. Our modeling goal is to predict the state (alive/dead) of a

subject at a pre-determined future time point. We explore modeling of survival data as

binary classification problem that incorporates additional information (such as time of

death, censored/uncensored status, etc.) under LUPI framework. Then we propose two

advanced constructive Support Vector Machine (SVM)-based formulations: SVM+ and

Loss-Order SVM (LO-SVM). Empirical results using simulated and real-life survival data

indicate that the proposed LUPI-based methods are very effective (versus classical Cox

regression) when the survival time does not follow classical probabilistic assumptions.

Our second technical contribution is a new learning method for classification called

Group Learning. This method is motivated by modeling high-dimensional data when the

number of input features is much larger than the number of training samples. There are

two main approaches to solving such ill-posed problems: (a) selecting a small number of

informative features via feature selection; (b) using all features but imposing additional

complexity constraints, e.g., ridge regression, SVM, LASSO, etc. The proposed Group

Learning method takes a different approach, by splitting all features into several (t)

groups, and then estimating a classifier in reduced space (of dimensionality d/t). This

approach effectively incorporates all input features, but implements training in a lower-

dimensional input space. Note that the formation of groups reflects application-domain

knowledge. For example, for classification of two-dimensional (2-D) images represented

as a set of pixels (original high-dimensional input space), appropriate groups can be

formed by grouping adjacent pixels or “local patches” because adjacent pixels are known

to be highly correlated. We provide empirical validation of this new methodology for two

real-life applications (a) handwritten digit recognition, and (b) predictive classification

of univariate signals, e.g., prediction of epileptic seizures from intracranial electroen-

cephalogram (iEEG) signal.

1.2. Technical Contributions

Next, we outline several technical contributions presented in this thesis.
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• For modeling survival data:

(1) We demonstrated application of SVM+, a LUPI-based learning method, for

modeling survival data under binary classification setting. This approach

incorporates the survival time information into learning and can also handle

censored observations.

(2) We proposed LO-SVM algorithm under LUPI framework. This LO-SVM

can encode the survival time information effectively via a new ordering

mechanism. We provided empirical comparisons between SVM+, LO-

SVM, standard SVM, and statistical model for survival data.

• For Group Learning method:

(1) We developed a Group Learning framework for modeling high-dimensional

data under classification setting. The proposed learning methodology has

been shown empirically its effectiveness in application of 2-D image recog-

nition problems.

(2) We provided an application of Group Learning to seizure prediction prob-

lems formalized as classification of univariate signals (i.e., iEEG recordings

of brain activity). Empirical results show that the proposed seizure pre-

diction system achieves high sensitivity and low false-positive error rate.

1.3. Structure of the Thesis

This thesis includes three major parts:

(1) Background description of predictive learning and SVM (in Chapter 2).

(2) Extensions of LUPI for modeling survival data (Chapters 3 and 4).

(3) Group Learning with application to prediction of epileptic seizures (Chapters 5,

6, and 7).

Part I on modeling survival data is based on the following publications and manu-

script:

• H.-T. Shiao and V. Cherkassky, “Learning Using Privileged Information (LUPI) for

modeling survival data,” in Neural Networks (IJCNN), 2014 International Joint Con-

ference on, Jul. 2014.
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• H.-T. Shiao, T. Vacek, and V. Cherkassky, “LUPI-based approaches for modeling

survival data,” in Proceedings of the International Workshop on Human is More Than

a Labeler (BeyondLabeler), co-located with the 25th International Joint Conference on

Artificial Intelligence (IJCAI 2016), Jul. 2016.

• H.-T. Shiao, T. Vacek, and V. Cherkassky, “Predictive modeling of survival data,”

submitted to IEEE Trans. Neural Netw. Learn. Syst., under review.

Part II on Group Learning is based on the following publications and manuscript:

• V. Cherkassky, B. Veber, J. Lee, H.-T. Shiao, E. Patterson, G. A. Worrell, and

B. H. Brinkmann, “Reliable seizure prediction from EEG data,” in Neural Networks

(IJCNN), 2015 International Joint Conference on, Jul. 2015.

• H.-T. Shiao, V. Cherkassky, J. Lee, B. Veber, E. Patterson, B. H. Brinkmann, and

G. A. Worrell, “SVM-based system for prediction of epileptic seizures from iEEG sig-

nal,” IEEE Trans. Biomed. Eng., vol. 64, pp. 1011–1022, May 2017.

• H.-T. Shiao, V. Cherkassky, “Group Learning: shallow deep learning,” in preparation.

• H.-H. Chen, H.-T. Shiao, V. Cherkassky, “Online prediction system for epileptic

seizures using iEEG signal,” in preparation.



Chapter 2

Background

This chapter reviews the basic concepts of predictive learning and Support Vector

Machine (SVM). The content of this chapter mainly follows [3, 4, 5].

2.1. Objective of Predictive Learning

The process of learning is about estimating an unknown dependency or structure

between the input and output of a system, based on a limited number of observations.

The finite training set is denoted as independent identically distributed pairs

(x1, y1), . . . , (xn, yn), (2.1)

generated from a fixed but unknown probability measure P (x, y). Suppose f(x, ω) denote

the set of functions estimated by the learning machine and indexed by ω. The quality of

an approximation produced by the learning machine is measured by the loss L(f(x, ω), y),

or the discrepancy between the output y produced by the original system and the output

f(x, ω) produced by learning machine for a given input x.

The goal of learning is to estimate the function f(x, ω0) that guarantees the smallest

loss. That is, the goal is to find the function which minimizes the risk functional

R(ω) =

∫∫

L(f(x, ω), y)P (x, y) dxdy (2.2)

over the set of functions supported by the learning machine using only training data (2.1).

With finite data we cannot expect to find f(x, ω0) exactly. Instead, we can obtain

f(x, ω∗) which represents the estimate of the optimal solution obtained with finite train-

ing data using one learning procedure. The estimated function f(x, ω∗) is expected

5



2.3. SVM FOR CLASSIFICATION 6

to have good prediction accuracy for future (test) data. High prediction accuracy is

normally called good generalization in the field of machine learning.

In practice, in order to evaluate a machine learning algorithm or compare different

algorithms, we use the so called test error as the criteria. Suppose we are given a test

set (xj , yj), j = 1, . . . ,m, the test error is defined as

Etest =
m
∑

j=1

L(f(xj , ω
∗), yj). (2.3)

2.2. Classification

For the generic learning problems, classification and regression are two common

learning tasks. The differences between classification and regression are the outputs and

loss functions. We will mainly deal with binary classification in this thesis.

The output of a binary classification system takes on only two values y ∈ {+1,−1}

corresponding to two classes. Hence, in learning machine, f(x, ω), ω ∈ Ω, are a set

of indicator functions. The most commonly used loss function for binary classification

problem is the misclassification error defined as

L(f(x, ω), y) =











0, if y = f(x, ω),

1, if y 6= f(x, ω).

For completeness, we also give a brief description about regression here. The output

of the system in a regression problem takes on real values: y ∈ R. In a learning machine,

f(x, ω), ω ∈ Ω, are a set of functions with real values. A common loss function for

regression problem is the squared error defined as

L(f(x, ω), y) = (y − f(x, ω))2.

2.3. SVM for Classification

This section describes a family of learning algorithms known as Support Vector Ma-

chine and provides the fundamental mathematical formulation of SVM. SVM method-

ology was developed in Statistical Learning Theory [6], and later was adopted by re-

searchers in machine learning, statistics, and signal processing.
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According to Vapnik-Chervonenkis (VC) theory, the generalization bound for learn-

ing with finite samples is as follows,

R(ω) ≤ Remp(ω) + Φ

(

h

n
,
log η

n

)

. (2.4)

Detailed analysis suggests that the second term Φ, called the confidence interval, depends

mainly on the VC-dimension (or the ratio h/n), whereas the first term (empirical risk)

depends on parameter ω. SVM provides a special way to achieve small empirical risk

(first term) using low complexity (second term) parameterizations. Therefore, SVM

provides good generalization for future (test) data.

Consider a binary classification setting where we are given finite training data (xi, yi),

i = 1, . . . , n, with x ∈ Rd and y ∈ {+1,−1}. The goal of SVM is to find the optimal

decision function

f(x) = sgn(w,x) + b

with good generalization performance.

Assuming that training data is linearly separable, there are many separating hyper-

planes (w,x) + b satisfying the constraints

yi((w,xi) + b) ≥ 1,

for i = 1, . . . , n. SVM method considers an optimal separating hyperplane, for which

the margin (i.e., the distance between the closest data points to the hyperplane) is

maximized [6, 7]. The VC dimension (model complexity) of an optimal separating

hyperplane is

h ≤ min

(

r2

∆2
, d

)

+ 1, (2.5)

where r is the radius of the smallest sphere that contains the training input vectors

(x1, . . . ,xn), and ∆ is the margin. SVM implements structural risk minimization (SRM)

inductive principle by keeping the value of empirical risk fixed (zero for the linearly

separable case) and minimizing the confidence interval (by maximizing margin). The

concept of margin is illustrated in Figure 2.1.
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f(x) = 0

+1

−1

1/‖w‖

y = +1

y = −1

Figure 2.1. Binary classification problem, where circles denote samples
from positive class and squares denote samples from negative class. The
margin 1/‖w‖ is the distance between the closest data points to the hy-
perplane. The shaded circle(s) and square(s) represent the support vec-
tors.

Maximization of margin is equivalent to minimization of ‖w‖. To this end, SVM

solves the following optimization problem:

minimize
1

2
‖w‖2

subject to yi((w,xi) + b) ≥ 1, i = 1, . . . , n,

(2.6)

with w ∈ Rd and b ∈ R as the variables. That is, the problem of finding an optimal

large-margin separating hyperplane for linearly separable data is reduced to a quadratic

programming (QP) problem (2.6). It is common to solve (2.6) (the primal problem) in

its dual form. According to convex optimization, an optimization problem has a dual

form if the objective function and constraints are strictly convex [8]. In this case, solving
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the dual problem is equivalent to solving the original. The dual form of (2.6) is

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xi,xj)

subject to
n
∑

i=1

αiyi = 0,

α � 0,

(2.7)

with α ∈ Rn
+ as the variables. The optimal hyperplane decision function has the follow-

ing form

f(x) =

n
∑

i=1

α∗
i yi(x,xi) + b̂, (2.8)

where α∗
i , i = 1, . . . , n, are the solutions of (2.7), and b̂ is called the bias term.

The parameters αi are generally known as Lagrange multipliers. Note that αi ≥ 0

correspond to the constraints yi((w,xi) + b) ≥ 1 in (2.6). That is, data points that

satisfy the constraints with inequality have their multipliers in (2.8) equal zero. The

data points that satisfy the constraints with equality are support vectors, and they have

nonzero values of α∗
i . Therefore, the solution (2.8) depends only on a subset of data

points, i.e., support vectors. The support vectors are illustrated in Figure 2.1 with

shaded circle(s) and square(s). Once the Lagrange multipliers have been estimated, the

bias term b̂ can be calculated using any of the support vectors (xs, ys):

b̂ = ys −
n
∑

i=1

α∗
i yi(xs,xi). (2.9)

When training data are not linearly separable, the empirical risk Remp(w) is no

longer zero. That is, a few training samples are allowed to fall inside the margin (so

called soft margin). One can introduce the nonnegative slack variables

ξi = max(1− yif(xi,w), 0), (2.10)

for i = 1, . . . , n, to represent the deviations from margin borders, as illustrated in Fig-

ure 2.2. The empirical risk is then defined as

Remp(w) =
n
∑

i=1

ξi.
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In this case, SVM attempts to strike a balance between the goal of empirical risk mini-

mization and margin maximization by solving the following optimization problem:

minimize
1

2
‖w‖2 + C

n
∑

i=1

ξi

subject to yi((w,xi) + b) ≥ 1− ξi, i = 1, . . . , n,

ξ � 0,

(2.11)

with w ∈ Rd, b ∈ R, and ξ ∈ Rn
+ as the variables.

f(x) = 0

+1

−1

1/‖w‖

ξ1

ξ2

ξ3

x1

x2

x3

y = +1

y = −1

Figure 2.2. Nonseparable case for binary classification. Slack variables
ξi = 1 − yif(xi) correspond to the deviation from the margin borders.
Three data points x1, x2, and x3 are nonseparable, since they are within
the margin. Data points x2 and x3 are misclassified, since they are on
the wrong side of the decision boundary. Data point x1 is nonseparable,
but classified correctly.

The ‖w‖ term in the objective function of (2.11) controls the size of margin. The ξi

is the slack variable which indicates the deviation from the margin borders for sample



2.4. NONLINEAR SVM 11

(xi, yi). The parameter C, selected by users, controls the trade-off between the com-

plexity and proportion of nonseparable samples. The selection of C is known as model

selection, and it is usually done via cross validation.

Problem (2.11) is also solvable in its dual form:

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xi,xj)

subject to
n
∑

i=1

αiyi = 0,

0 � α � C,

(2.12)

with α ∈ Rn
+ as the variables. This optimization problem differs from that for the

separable case (2.7) only with the inclusion of a maximum limit C in constraints. So (2.7),

for linearly separable data, can be regarded as a special case of (2.12) with a very large

value of parameter C. The optimal hyperplane decision function has the same form as

for the separable case (2.8):

f(x) =
n
∑

i=1

α∗
i yi(x,xi) + b̂,

where α∗
i , i = 1, . . . , n, are the solutions of (2.12) and the bias b̂ is given in (2.9).

2.4. Nonlinear SVM

This section discuss how to construct large margin nonlinear decision boundary. The

general approach is to map the input vector x into a high-dimensional feature space, and

then construct an optimal hyperplane in this feature space [4, 6]. Obviously, hyperplanes

in this feature space will correspond to nonlinear decision boundaries in the input space.

The conceptual motivation for the nonlinear mapping can be also provided by the

VC generalization bound (2.4). Note that the empirical risk term in (2.4) can be always

reduced to zero or a small value following the nonlinear mapping Ψ(x) : x 7→ z to a high-

dimensional feature space. So a good generalization may be guaranteed, if the confidence

interval Φ is small, which can be achieved by controlling the VC dimension, i.e., using

large margin hyperplanes in the feature space.
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To extend the linear SVM to a nonlinear one, we do not need to specify the nonlinear

basis function Ψ explicitly. It is sufficient to provide a kernel function K(xi,xj) in the

input space and substitute the dot product (xi,xj) in (2.7), (2.8), (2.9), and (2.12) with

K(xi,xj). Hence, the nonlinear version of (2.12) is

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjK(xi,xj)

subject to
n
∑

i=1

αiyi = 0,

0 � α � C,

(2.13)

and the nonlinear SVM decision function is

f(x) =
n
∑

i=1

α∗
i yiK(x,xi) + b̂, (2.14)

with the bias term

b̂ = ys −
n
∑

i=1

α∗
i yiK(xs,xi). (2.15)

The kernel function K(xi,xj) effectively defines the (nonlinear) similarity metric

between any two data points xi and xj in the input space. Commonly used kernel

functions include:

(1) Polynomial kernel of degree m (where m is a positive integer)

K(xi,xj) = ((xi,xj) + 1)m.

(2) Radial basis function (RBF) kernel with width parameter σ

K(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

,

or in alternative form

K(xi,xj) = exp
(

−γ‖xi − xj‖
2
)

,

with γ > 0.
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Extensions of LUPI



Chapter 3

Learning Using Privileged Information

This chapter describes a learning paradigm called Learning Using Privileged Informa-

tion (LUPI), a general methodology for utilizing additional information about training

data. Two mathematical formulations under the LUPI framework, namely SVM+ and

Loss-Order SVM, are introduced in this chapter as well.

3.1. Introduction

In a data-rich world, there often exists additional information about training data,

which is not reflected in the labeled training samples (xi, yi), i = 1, . . . , n. This additional

information is not known during prediction, so the goal of learning is to estimate a model

ŷ = f(x), as in standard inductive learning [4].

We use the following examples to illustrate this possibility.

(1) Handwritten digit recognition, whereas the training data are known to be gen-

erated by several persons. In this case, each training sample has an additional

person (group) label, and this information can be used to improve generaliza-

tion. However, this group label is not available during the test stage, e.g., a

classifier uses only pixels of an image for making prediction.

(2) Medical diagnosis, whereas the goal is to estimate a predictive classifier for di-

agnosing a disease based on the clinical tests, or input features x, known at

the time of initial examination. However, the available data may include addi-

tional patient history obtained later, such as pathological reports and advanced

tests. This additional information, denoted as feature vector x∗, can be used

for training a classifier. However, features x∗ are not known during testing (or

prediction stage of a classifier). Hence, the goal of learning is to estimate a

14
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decision rule ŷ = f(x), a function of input features only known at the time of

initial examination.

(3) Time series prediction, whereas the goal is to predict a future event based on

past (known) values of a time series. For instance, given historical information

about the values of a stock market index up to moment t, we would like to

predict if this index at moment t+ δt will be higher or lower (roughly speaking

to make a decision to sell or buy). Clearly, the historical data (used for training)

also includes the values of the index around t + δt, e.g., two days before and

after t+ δt. This additional information can be incorporated into training, and

it may improve generalization.

All these examples include potentially useful extra information about the training

inputs and/or training outputs. Further, this additional information is ubiquitous: it

usually exists for almost any machine learning problem. Formally, the training data are

provided in the following form

(x1,x
∗
1, y1), . . . , (xn,x

∗
n, yn), (3.1)

where xi ∈ X, x∗
i ∈ X∗, and yi ∈ {+1,−1}. These data are generated according to a

fixed but unknown P (x,x∗, y), where the (x, y) is the usual labeled training data and

(x∗) denotes the additional information.

Since the additional information is available only for the training set and is not

available for the test set, it is called privileged information, and the new machine learning

paradigm is called Learning Using Privileged Information [1, 2, 9, 10].

In the LUPI paradigm, the goal is to find among a given set of indicator functions

f(x, ω), ω ∈ Ω, the function f(x, ω∗) that guarantees the smallest probability of incorrect

classification. Here we have exactly the same goal of minimizing (2.2) as in the classical

paradigm described in Section 2.1, i.e., to find the best classification function in the

admissible set. However, during the training stage, we have more information, i.e., we

have triplets (x,x∗, y) instead of pairs (x, y) as in the classical paradigm. The privileged

information x∗ belongs to space X∗, which is, generally speaking, different from X. Note
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that the function representation f(x, ω∗) does not depend on x∗; however, x∗ is involved

in the estimation of f(x, ω∗).

The privileged information has two common properties:

(1) it is available only for training samples, and not known for test samples;

(2) it should have an informative value for estimating a predictive model ŷ = f(x).

These two properties suggest another useful interpretation of the privileged information:

it can be viewed as additional feedback from an expert teacher, provided during learn-

ing [1]. We give two examples of privileged information that could be generated by an

intelligent teacher.

Example 1. Suppose that our goal is to find a rule ŷ = f(x) that classifies biopsy

images x into two categories y: cancer (y = +1) and noncancer (y = −1). Here images

are in a pixel space X, and the classification rule has to be in the same space. However,

the standard diagnostic procedure also includes a pathologist’s report x∗ that describes

his/her impression about the image in a high-level holistic language X∗ (for example,

“aggressive proliferation of cells of type A among cells of type B,” etc.). The problem

is to use the pathologist’s reports x∗ as additional information (along with images x) in

order to make a better classification rule for images x just in pixel spaceX. Classification

by a pathologist is a time-consuming procedure, so fast decisions during surgery should

be made without consulting him or her.

Example 2. Let our goal be finding a rule that predicts the outcome y of a surgery

in three weeks after it, based on information x available before the surgery. In order

to find the rule in the classical paradigm, we use pairs (x, y) from previous patients.

However, for previous patients, there is also additional information x∗ about procedures

and complications during surgery, development of symptoms in one or two weeks after

surgery, and so on. Although this information is not available before surgery, it does

exist in historical data and thus can be used as extra information in order to construct

a rule that is better than the one obtained without using that information. The issue is

how large an improvement can be achieved.

According to VC theory, LUPI is a general methodology for utilizing privileged in-

formation about training data, and it constructs a new SRM structure on the training
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set (3.1) [4, 1, 2]. This task may appear similar to the development of new structures

for nonstandard learning formulations, where the new structures incorporate additional

constraints, such as a large margin for test samples for transduction, or a large number

of contradictions for Universum SVM [3, 4, 1]. The difference is that in earlier nonstan-

dard SVM-based formulations the appropriate structures have been defined in the same

feature space X. In contrast, under LUPI setting, additional privileged information is

specified in a different feature space X∗, but this information is related to errors in the

input space X.

This chapter is organized as follows. Section 3.2 describes the SVM+ technique

under LUPI framework. Section 3.3 explains the Loss-Order SVM (LO-SVM) technique

under LUPI framework, specializing for univariate privileged information. Section 3.4

provides a comparison between SVM+ and LO-SVM. Finally, a summary is presented

in Section 3.5.

3.2. SVM+

SVM+ is a method for function estimation extended from SVM, and it allows one to

solve machine learning problems under the LUPI paradigm [1, 2]. The SVM+ method

performs learning in two different spaces:

(1) decision space Z (via the mapping Ψ(x) : x 7→ z)

This is the space where the decision function needs to be estimated, and it

is the same feature space as used in standard SVM.

(2) correcting space Z∗ (via the mapping Ψ∗(x) : x 7→ z∗)

This is the space where the correcting function, reflecting the privileged

information about the training data, is defined. This privileged information is

encoded in the form of additional constraints on the training errors (e.g., slack

variables) in the decision space.

The mappings of inputs x and x∗ in SVM+ are illustrated in Figure 3.1. This figure

shows linear models ψ(x, ω) and ψ∗(x∗, ω∗) in the decision space and correcting space.

However, the mapping Ψ(x) and Ψ∗(x) themselves may be nonlinear, and both the

decision and correcting spaces can use different kernels. The considerations of kernel for
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correcting space are discussed later in Section 3.2.1. It should be noted that the final

performance of SVM+ models would depend on the quality of the privileged information.

training

ξ

Decision space Correcting space

correcting
function

decision
function

X X
∗

ξ2

ξ1

mapping mapping

ξ2

ξ1

data

Figure 3.1. SVM+ maps the training data simultaneously into the deci-
sion space and the correcting space. Slack variables in the decision space
are represented by the correcting functions in the correcting space.

Mathematically, SVM+ estimates the decision function f(z) = (w, z) + b from the

training data (3.1) by solving the following optimization problem:

minimize
1

2
‖w‖2 +

γ

2
‖w∗‖2 + C

n
∑

i=1

ξi

subject to yi((w, zi) + b) ≥ 1− ξi, i = 1, . . . , n,

ξi = (w∗, z∗i ) + b∗, i = 1, . . . , n,

ξ � 0,

(3.2)

with w ∈ Rd, b ∈ R, w∗ ∈ Rk, b∗ ∈ R, and ξ ∈ Rn
+ as the variables. In (3.2), C > 0

and γ > 0 are two hyperparameters, whereas z and z∗ are the feature mappings of x and

x∗. Furthermore, the correcting function ξi = (w∗, z∗i ) + b∗ = (w∗, ψ∗(x∗
i )) + b∗ in (3.2)

represents a linear model for the slack. These correcting functions provide additional

constraints on the slack variables (errors) in the decision space. The correcting functions

are nonnegative because they correspond to slack variables.
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The SVM+ replaces the slack variables in standard SVM with a slack function defined

in the correcting space. Through the slack function, the additional privileged information

is used to model the loss function, which guides the hyperplane learning in the decision

space [11]. In contrast, the slack variables in standard SVM are only constrained to

nonnegative values, which is often less effective than the slack function in SVM+.

Relative to standard SVM formulation (2.11), this new formulation (3.2) includes:

(1) additional term ‖w∗‖ restricting the capacity (or VC dimension) of the correct-

ing function;

(2) extra constraints reflecting the influence of the privileged information on train-

ing errors.

Hyperparameters C and γ control the trade-off between the capacity of decision function

(i.e., margin size), the capacity of correcting function, and the number of training errors.

Setting γ to zero yields the standard SVM formulation (2.11).

Assuming nonlinear kernels for both decision and correcting spaces, SVM+ has four

tuning parameters (two kernel parameters along with C and γ). Model selection with

four tuning parameters is quite challenging, and using resampling approaches with finite

data often results in very unstable estimated models [4].

Problem (3.2) is commonly solved in its dual form:

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(zi, zj)

−
1

2γ

n
∑

i=1

n
∑

j=1

(αi + βi − C)(αj + βj − C)(z∗i , z
∗
j )

subject to
n
∑

i=1

αiyi = 0,

n
∑

i=1

(αi + βi − C) = 0,

α � 0,

β � 0,

(3.3)

with α ∈ Rn
+ and β ∈ Rn

+ as the variables.
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The solution to SVM+ includes a decision function

f(x) = (w, z) + b̂ = (w, ψ(x)) + b̂

=
n
∑

i=1

αiyiK(x,xi) + b̂,
(3.4)

and a correcting function

ξ(x∗) = (w∗, z∗) + b̂∗ = (w∗, ψ∗(x∗)) + b̂∗

=
1

γ

n
∑

i=1

(αi + βi − C)K∗(x∗,x∗
i ) + b̂∗,

(3.5)

where αi and βi, i = 1, . . . , n, are the solutions of (3.3), and K∗ is a kernel function in

the correcting space. However, only (3.4), the model estimated in the decision space Z,

is used for prediction.

Comparing between the solutions of SVM and SVM+, we observe that the SVM

solution in (2.8) depends only on the values of pairwise similarities between training

vectors defined by the Gram matrix K of elements K(xi,xj) (which defines similarity

between vectors xi and xj). However, the SVM+ solution in (3.4) and (3.5) uses two

expressions of similarities between training vectors: one (K(xi,xj) for xi and xj) that

comes from space X, and another one (K∗(x∗
i ,x

∗
j ) for x

∗
i and x∗

j ) that comes from space

of privileged information X∗ [10].

Additionally, one can show that w and w∗ can be expressed in terms of training

samples:

w =

n
∑

i=1

αiyizi,

w∗ =
1

γ

n
∑

i=1

(αi + βi − C) z∗i ,

based on the Karush-Kuhn-Tucker (KKT) conditions.

3.2.1. Kernels in Correcting Space

In this section, we explore several properties of the correcting function, and argue

that a (nonlinear) kernel should be used in the correcting space. The correcting function

(in the correcting space) represents a unique way that SVM+ handles the additional
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privileged information. That is, the SVM+ approach assumes the decision function (3.4)

interact differently with training data according to the privileged information via the

correcting function (3.5). In SVM+, the correcting function is a real-valued function

with its characteristics:

(1) Since the correcting function models the slack variables (in the decision space),

as shown in Figure 3.1, the function values have to be nonnegative, ξ(x∗
i ) ≥ 0,

for i = 1, . . . , n. Graphically, training samples in the correcting space have to

lie on one side of the corresponding correcting function.

(2) According to the definition of slack variables, ξ(xi) = max(1 − yif(xi,w), 0),

we know ξ(xi) is strictly greater than zero if the data point xi falls within the

margin, such as data points x1, x2, and x3 in Figure 2.2.

(3) A correcting function has to pass through points with zero slack variables. Those

points include the support vectors (such as the shaded circle(s) and square(s)

in Figure 2.2) and the separable data points.

x∗

ξ(x∗)

a
b

c x∗

ξ(x∗)

a

bc

Figure 3.2. An arbitrary linear correcting function would violates
ξ(x∗) ≥ 0 at x∗ = b (left panel) or x∗ = a (right panel).

Now suppose the privileged information is univariate, i.e., x∗ ∈ R or the dimen-

sionality of the privileged information space X∗ is one. It should be obvious that the

correcting function ξ(x∗) cannot be any linear function in the correcting space. As

shown in Figure 3.2, an arbitrary linear function ξ(x∗) cannot guarantee the properties
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of a correcting function. First, a few univariate privileged information would violate

ξ(x∗) ≥ 0, for instance, ξ(b) < 0 (left panel) and ξ(a) < 0 (right panel) in Figure 3.2.

Consequently, not all points (privileged information) lie on one side of ξ(x∗). Second,

this linear function only pass through x∗ = c with ξ(c) = 0.

Meanwhile, if we assume that the univariate privileged information is bounded, x∗ ∈

[a, b], the only linear function satisfies the properties is the one that passes through

x∗ = b with negative slope or through x∗ = a with positive slope. Both cases are shown

in Figure 3.3. However, linear correcting function with either ξ(b) = 0 or ξ(a) = 0 is not

ideal and realistic. They both implicitly allow only one support vector. In summary,

linear correcting function is not going to be useful, and it might not even work in most

situations.

x∗

ξ(x∗)

a b x∗

ξ(x∗)

a b

Figure 3.3. The only two valid linear correcting functions if x∗ ∈ [a, b].

In order to satisfy all three properties of a correcting function, a nonlinear correcting

function would be a proper choice. Figure 3.4 shows three possible choices of nonlinear

correcting functions, namely quadratic, exponential, and sigmoid functions. All three

functions have all data points on one side of the function. The quadratic function passes

through data points around the vertex with ξ(x∗) = 0 or close to zero. The exponential

and sigmoid functions can pass through a wide range of data points. A valid nonlinear

correcting function would still need to ensure the kernel matrix K∗ satisfy the Mercer’s
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conditions (symmetric and positive semi-definite). In practice, a nonlinear correcting

function can be obtained by specifying a nonlinear mapping Ψ∗(x) : x 7→ z∗. Further,

using the “kernel trick” described in Section 2.4, it should suffice to specific a kernel

function K∗(x∗
i ,x

∗
j ) for constructing a nonlinear function (hyperplane) in the correcting

space.

To sum up, we use the univariate privileged information and properties of a cor-

recting function to argue that a suitable correcting function should be nonlinear, and

a kernel should be used in the correcting space. This argument can be extended to

high-dimensional privileged information as well.

x∗

ξ(x∗)

x2

x∗

ξ(x∗)

ex

x∗

ξ(x∗)

1
1+e−x

Figure 3.4. Using nonlinear function (quadratic, exponential, sigmoid
function) as the correcting function.
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3.2.2. Implementation

SVM+ model selection is very difficult due to the fact that the kernelized version of

SVM+ binary classifier has four tuning parameters. Hence, the computationally efficient

solution of SVM+ optimization becomes critical.

The process of training of standard SVM (or SVM+) involves solving a large Qua-

dratic Programming (QP) problem as introduced in Section 2.3 and 3.2. The compu-

tational complexity of solving the QP problem (2.12) in SVM training grows as O(n3),

where n is the sample size [12]. This is slow when n is large. One of the widely used

fast algorithms to train SVM is the Sequential Minimal Optimization (SMO) algorithm

proposed by John Platt [13]. This algorithm solves the dual problem of SVM (2.12) in

an iterative way. Specifically, SMO breaks a large QP problem into a series of sub-QP

problems of the smallest possible size. Each sub-QP problem has only two variables

and the analytical solution can be found for this small QP problem, which makes the

training much faster. The decision about which pair of variables should be optimized at

the current iteration is done by rules of working set selection [13, 14]. This approach

was implemented in the LIBSVM package [15] for standard SVM and made this package

popular in the machine learning community.

Our initial implementations of SVM+ used a general-purpose convex optimization

package CVX [16]. However, the scalability is an issue of using CVX as the solver of

the QP problem (3.3). Figure 3.5 shows the empirical estimates of computational time

for SVM+ implemented in CVX, as a function of training sample size. Clearly, it takes

more than 4 minutes to find a solution for the QP problem (3.3) when the training size

exceeds 1000 samples. Thus, current model selection strategies become impractical and

infeasible, especially the one using exhaustive grid search. Notably, most recent academic

papers seem to use general-purpose optimization for their LUPI implementations, as they

have shown empirical comparisons only for small training sets (about 200 to 400 samples),

and they did not address/describe the challenging issues of model selection. A typical

quote from [17]: “On the data set of this size (a few thousand) we found it infeasible to

run experiments using SVM+.”
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Figure 3.5. Empirical estimate of computational time of SVM+ imple-
mented in CVX as a function of training sample size.

Alternatively, we chose to implement SVM+ using the quadprog package in Matlab

Optimization Toolbox. The quadprog package was designed specifically for solving the

QP problems, rather than general convex optimization problems. Our implementation

involves the selection of the optimization option and also the stopping criterion (tol-

erance) optimally tuned for the SVM+ algorithm. Our experiments suggest that the

quadprog implementation of SVM+ is capable of handling training data sets of size 1K-

5K samples. That is, solving SVM+ optimization problem (for 1K-5K training samples)

takes 2-12 seconds on a typical PC.

Next, we describe details of transforming SVM+ dual problem (3.3) into the canonical

QP form for quadprog. The objective function of (3.3), reproduced below,

−
n
∑

i=1

αi +
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(zi, zj) +
1

2γ

n
∑

i=1

n
∑

j=1

(αi + βi − C)(αj + βj − C)(z∗i , z
∗
j )



3.2. SVM+ 26

can be translated into the following,
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, (3.6)

where

H1 =





















y1y1(z1, z1) · · · y1yn(z1, zn)

...
. . .

...

yny1(zn, z1) · · · ynyn(zn, zn)





















, H2 =
1

γ





















(z∗1, z
∗
1) · · · (z∗1, z

∗
n)

...
. . .

...

(z∗n, z
∗
1) · · · (z∗n, z

∗
n)





















.

The equality constraints in (3.3),
∑

αiyi = 0 and
∑

(αi + βi −C) = 0, can be combined

into the matrix form below,











y1 · · · yn 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0
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. (3.7)
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Further, the inequality constraints α � 0 and β � 0 in (3.3) are equivalent to
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, (3.8)

and
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. (3.9)

Finally, problem (3.3) can be rewritten in a concise QP form,

minimize
1

2
xTHx+ fTx

subject to Aeq x = beq,

Ax � b,

LB � x � UB.

(3.10)
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The objective function
1

2
xTHx+ fTx is given in (3.6) with x, H, and f defined as

x =
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respectively. The equality constraint Aeq x = beq is described in (3.7) with

Aeq =











y1 · · · yn 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0











, beq =











0

0











.

The inequality constraints Ax � b and LB � x � UB are given in (3.8) and (3.9) with
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.

Although SVM+ can be transformed into a canonical QP form (3.10) and solved

using any efficient QP solver, it is still not an ideal approach. One reason is that the

number of dual variables (Lagrange multipliers) are doubled. Instead of solving n dual
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variables in (2.12), we need to solve 2n dual variables in (3.3) or (3.10). This could be

an issue when the training sample size is significantly large.

While SVM+ can also be solved by an SMO-style algorithm [18, 19], the working set

selection method is complicated, and the algorithm is also slow in practice. Moreover, it

is unclear how to apply it to linear SVM+ without calculating the kernel matrix, which

is becoming more crucial, due to rapidly increasing data in real-world applications [11].

Li et al. proposed two fast algorithms for solving linear and kernel SVM+ in [11]. We

summarize both algorithms and comment on their applicabilities below.

(1) Solution for linear SVM+

By absorbing the bias terms into the weight vectors in both decision and

correcting spaces, the optimization problem (3.2) (or its dual form (3.3)) can be

rewritten as a special form of linear SVM introduced in [20]. Such linear SVM

can be solved by using a dual coordinate descent method, and this approach has

been implemented in the software package LIBLINEAR [21] which specializes

in large linear classification problems. Conveniently, the LIBLINEAR package

can be used for solving the linear SVM+ as well. Although using LIBLINEAR

to solve the linear SVM+ can significantly enhance the scalability, a nonlinear

mapping cannot be used in the correcting space. Utilizing the linear mapping in

the correcting space could potentially diminish the advantages of SVM+ based

on our arguments in Section 3.2.1.

(2) Solution for kernel SVM+

Instead of solving (3.2), Li et al. considered the l2 loss SVM+ formulation

minimize
1

2
‖w‖2 +

γ

2
‖w∗‖2 + C

n
∑

i=1

ξ2i

subject to yi((w, zi) + b) ≥ 1− ξi, i = 1, . . . , n,

ξi = (w∗, z∗i ) + b∗, i = 1, . . . , n,

ξ � 0,

(3.11)
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by employing the squared hinge loss. Problem (3.11) is almost identical to (3.2),

except the ξ2i term in the objective function. Then (3.11) can be rewritten into

the l2 loss ρ-SVM+ formulation based on the l2 loss ρ-SVM introduced in [22].

The dual form of l2 loss ρ-SVM+ shares a similar form with one-class SVM

implemented in the software package LIBSVM [15]. Therefore, the LIBSVM

package (with one-class option) can be readily used for solving the l2 loss ρ-

SVM+ (or equivalently l2 loss SVM+).

The benefits of this strategy are twofold. First, both linear and nonlinear

mappings can be applied to the decision and correcting spaces, in contrast to

the limitation in linear SVM+. Second, since the SMO algorithm is the core

implementation of LIBSVM, this strategy effectively takes advantage of SMO’s

efficiency for solving l2 loss SVM+ (either linear or kernel). This strategy is

likely to be faster than the SVM+ solver [19] in practice.

3.3. Loss-Order SVM

In this section, we introduce another LUPI-based formulation which utilizes univari-

ate privileged information (i.e., the dimensionality of privileged information space X∗ is

one or x∗ ∈ R).

This univariate information can be an order oracle [2, 23], which gives ordering of

the training examples. For example, the posterior probability P (y | x) defines a total

ordering. Utilizing the ordering information via a special type of privileged information

can result in improved generalization. For survival data described later in Chapter 4, the

survival time information can be naturally considered as a good indicator for ordering.

Suppose the privileged information is related to (unknown) posterior probability

P (y | x), for instance,

P (y | x) = g(x∗), (3.12)

or

x∗ = g−1
[

P (y | x)
]

, (3.13)

where g is any nonnegative and nondecreasing function. That is, the actual probability

values are not important, as long as their correct orderings are preserved. Conceptually,
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the privileged information x∗, or g(x∗), can be viewed as a confidence measure, and the

ordering of x∗-values can improve learning (generalization). Further, we consider the

ordering provided by privileged information separately for each class, i.e.,

P (y = +1 | x) = g+(x
∗) (3.14)

for positive class, and

P (y = −1 | x) = g−(x
∗) (3.15)

for negative class.

The Loss-Order SVM (LO-SVM) has been proposed as a new formulation under

LUPI setting utilizing univariate privileged information [2, 23]. Mathematically, the

LO-SVM algorithm solves the optimization problem below:

minimize
1

2
‖w‖2 + C1

n
∑

i=1

ξi + C2

n
∑

i=1

ζi

subject to ξ � 0,

M(ξ + ζ) � 0,

yi((w,xi) + b) ≥ 1− (ξi + ζi), i = 1, . . . , n,

(3.16)

with w ∈ Rd, b ∈ R, ξ ∈ Rn
+, and ζ ∈ Rn

+ as the variables. Here, M is an order-

enforcing matrix that requires ξi + ζi ≤ ξj + ζj if g(x∗i ) > g(x∗j ) for nonzero ξi and ξj .

If C2 ≫ C1, then ζi = 0 for all i, and (3.16) is reduced to standard SVM (2.11). In

practice, the tuning parameters C1 and C2 should be set so that C1 < C2. Otherwise,

the solution of (3.16) is dominated by the ordering term.
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The corresponding dual form of (3.16) is

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xi,xj)

subject to
n
∑

i=1

αiyi = 0,

n
∑

i=1

(αi + βi − yiκi − yiλi − C1) = 0,

n
∑

i=1

(αi + µi − C2) = 0,

α � 0,

β � 0,

κ � 0,

λ � 0,

µ � 0,

(3.17)

or, equivalently,

maximize
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj(xi,xj)

subject to
n
∑

i=1

αiyi = 0,

n
∑

i=1

(αi − yiκi − yiλi − C1) ≤ 0,

n
∑

i=1

(αi − C2) ≤ 0,

α � 0,

κ � 0,

λ � 0,

(3.18)

with α ∈ Rn
+, κ ∈ Rn

+, and λ ∈ Rn
+ as the variables.
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This formulation tries to maintain correct orderings for nonseparable samples from

the same class (e.g., training samples with nonzero slack variables) using the privileged

information as a confidence measure. Hence, g(x∗i ) > g(x∗j ) implies that we have higher

confidence in the class label for training input xi. For SVM classification, the confidence

ordering provided by the privileged information g(x∗i ) > g(x∗j ) is shown in Figure 3.6.

That is, training sample xi should be closer to the margin border (or further away

from the decision boundary), when compared with xj . Then ζi and ζj are the amounts

of “movement” we need for enabling the ordering between xi and xj , as illustrated in

Figure 3.6.

f(x) = 0

ξ2 + ζ2

ξ1 + ζ1

ξ3 + ζ3

x1

x2

Figure 3.6. Given g(x∗1) > g(x∗2), the ζ1 and ζ2 enforce the ordering
ξ1 + ζ1 < ξ2 + ζ2. The ordering should assure that x1 is closer to the
margin border, compared with x2.

The LO-SVM algorithm also involves the specification of a nondecreasing function

g to ensure g(x∗i ) > g(x∗j ) if x∗i > x∗j . In fact, the analytic form of g does not matter,

as long as the ordering holds. In our implementation of LO-SVM, we use the identity

function for g.
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3.4. SVM+ versus Loss-Order SVM

Although both SVM+ and LO-SVM learning approaches incorporate the privileged

information, there are several differences between them. We highlight those differences

in this section.

The SVM+ uses the privileged information for modeling (or shaping) the slack vari-

ables directly, expecting an improvement in the hyperplane’s separability and leading to

better generalization. On the other hand, the LO-SVM considers the privileged informa-

tion as a confidence measure (through an appropriate transformation g), which provides

proper ordering for training samples.

The LO-SVM can be considered as a special case of SVM+ in two aspects:

(1) the privileged information is utilized in an one-dimensional correcting space;

(2) the correcting function is a nonlinear one composing with a series of inequalities

which ensures the ordering of samples.

The SVM+ potentially has wider range of applications since there is no limitation in the

dimensionality of the privileged information. Still, LO-SVM can be useful for training

data with univariate privileged information. The domain of applications and perfor-

mances for SVM+ and LO-SVM are discussed later in Chapter 4.

In terms of the computational implementation, the dual form of SVM+ (3.3) contains

2n Lagrange multipliers. In contrast, the dual problem of the LO-SVM (3.18) requires

finding 3n Lagrange multipliers. Solving (3.18) can become difficult for large n, especially

during the process of ordering.

Note that both SVM+ and LO-SVM formulations (3.2) and (3.16) are presented

only for linear parameterization; they can be readily extended to nonlinear case using

kernels [2].

3.5. Summary

The situation with existence of privileged information is very common. In fact, for

almost all machine learning problems there exists some sort of privileged information

especially in the era of Big Data. This information cannot be utilized by most standard

supervised learning methods developed in statistics and machine learning. Nonetheless,
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effectively utilizing this privileged information during training usually results in improved

generalization [2].

LUPI is a learning paradigm and a general methodology for utilizing privileged infor-

mation about training data. The SVM+ and LO-SVM are two formulations under the

LUPI framework. Technically, the SVM+ approach utilizes the privileged information

into modeling the training errors (or slack variables) via the correcting function, im-

posing additional constraints on slack variables. The LO-SVM considers the privileged

information as a confidence measure (through an appropriate transformation g), which

provides proper ordering for training samples.



Chapter 4

Modeling of Survival Data

Privileged information often appears in modern complex clinical datasets. It could

be a patient’s survival time or a patient’s medical history after diagnosis or medical

procedure. The most common type of data that include the privileged information is

the survival data. In this chapter, we demonstrate the modeling of survival data using

LUPI-based learning methods.

4.1. Introduction

A significant proportion of the medical data is a collection of time-to-event observa-

tions. Classical examples are the time from birth to cancer diagnosis, from disease onset

to death, and from patient’s entry to a study to relapse. All these times are generally

known as the survival time, even when the endpoint is something different from death.

Methods for survival analysis developed in classical statistics have been used to model

such data. Survival analysis focuses on the time elapsed from an initiating event to an

event, or endpoint, of interest [24, 25]. The models of classical survival analysis describe

the occurrence of events by means of survival curves and hazard rates, and analyze their

dependence on covariates by means of regression [24]. One classical approach for sur-

vival curve estimation is the Cox regression based on the proportional hazards model

assumption.

This modeling approach is generally known as the probabilistic (or descriptive) mod-

eling. The probabilistic modeling assumes that

(1) the training and future data (x, y) are sampled independently from the same

distribution P (x, y);

(2) the distribution P (x, y) is unknown but can be accurately estimated from data.

36
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Classical statistics further makes specific assumptions about the parametric form of a

distribution, and uses the training data to estimate its parameters. Clearly, the proba-

bilistic approach may produce a poor predictive model if the parametric model is specified

incorrectly or if the number of training samples is too small.

On the other hand, machine learning methods focus on estimating (learning) a good

predictive model from available data. Specifically, this predictive modeling approach first

specifies a wide set of admissible models f(x, ω) indexed by abstract set of parameters ω,

and then estimates the best predictive model from the training data. Further, predictive

modeling requires proper specification of the problem setting (formalization) including

the loss function used for measuring the quality of prediction, and specification of training

and test data [3].

Learning is the process of estimating an unknown dependency between system’s

inputs and its output, based on a limited number of observations. When the observations

are the survival data, the learning task becomes challenging. The main reason is that

there are three types of information in survival data. The first type of information is the

input variables, corresponding to ordinary inputs for most machine learning algorithms.

Additionally, the survival time and the censoring are two other types of information

included in survival data.

The survival time is the duration from the beginning of a study to the occurrence of

an event. However, the survival time could be censored and it normally happens when

an event is not observed at the end of a study. In such case, the observed survival time

is only a lower bound of the true survival time. Both the survival time and censoring

information are different from the ordinary input variables as they are only available in

the training data.

Therefore, machine learning techniques have not been widely used for survival anal-

ysis for two main reasons [26]:

(1) First, the survival time is not necessarily observed in all samples. For instance,

subjects might not experience the occurrence of event (death or relapse) during

a study, or they dropped out before the end of study. In either case, the survival

time is incomplete and only known “up-to-a-point.” This is termed censoring
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in biostatistics, which is different from the notion of “missing data” in machine

learning.

(2) The second reason is methodological. Machine learning techniques are usually

developed and applied under predictive setting, where the main goal is good

prediction accuracy for future (or test) samples. In contrast, classical methods

in statistics aim at estimating the true probabilistic model underlying available

data. So the prediction accuracy is just one of several performance indices.

The methodological assumption is that if an estimated model is “correct,” then

it should yield good predictions. Therefore, statistical methods often do not

clearly differentiate between training (model estimation) and prediction (test)

stages.

Several recent studies formalize the problem of survival analysis under the regression

setting. For example, the Support Vector Machine (SVM) regression is used to estimate

a predictive model for survival time [27, 28, 29]. However, the formalization using

regression setting is intrinsically more difficult than classification [4].

Our approach for modeling survival data uses classification setting [26]. We also

propose to incorporate the survival time and censoring information into learning by

considering them as the privileged information. Learning Using Privileged Information

(LUPI) is an advanced learning paradigm, where privileged information about training

examples is provided during training stage [2]. This chapter investigates two LUPI-based

formulations, SVM+ and LO-SVM, for modeling survival data. The SVM+ formulation

considers both the survival time and censoring information. The LO-SVM formulation

utilizes only the survival time information.

The chapter is organized as follows. Section 4.2 introduces necessary background

on survival data and survival analysis. Section 4.3 defines the formalization for a sur-

vival prediction problem. Section 4.4 describes the proposed LUPI-based methods for

modeling the survival data. The empirical comparisons for several synthetic and real-life

datasets are presented in Section 4.5. Finally, a summary is included in Section 4.6.
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4.2. Survival Analysis

This section provides general description of survival data. We also consider the

basic parameters used in modeling survival data in this section. We shall define these

quantities and show how they are interrelated. Common nonparametric and parametric

models for survival analysis are introduced as well.

4.2.1. Survival Data

The survival data (also known as failure time data) are obtained by observing subjects

(patients) from a certain initial time to either the occurrence of a predefined event or

the end of the study. The predefined event is often the death of a subject, remission of

disease, or relapse of disease, etc. The major difference between survival data and other

types of medical data is that the time-to-event occurrences are not necessarily observed

in all subjects [24].

A common feature of survival data is the possibility of censored observations. An

illustration of how censored observations (or censored survival times) may arise is given

in Figure 4.1. This figure illustrates a hypothetical clinical study where six subjects are

observed over a time period to see whether a predefined event occurs. Figure 4.1 shows

the observations as they occur in calendar time. Six subjects enter the study at different

times and are then followed until the event occurs or until the closure of the study after

t∗.

For subjects 2 and 6, the event was observed within the period of the study, and

we have complete observation of their survival times. Subjects 1, 3, and 5 had not yet

experienced the event when the study closed, so their survival times are censored. Note

that the censoring present in these data cuts off intervals on the right-hand side. This

censoring scheme is commonly known as right censoring.

In practice, a study may be terminated due to time or cost constraints, and its

results are reported before events are observed for all subjects. However, the closure

of the study is not the only reason for censoring. Right-censored observations will also
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Calendar time

Subject

1

2

3

4

5

6

t∗t′0

Figure 4.1. Example of survival data in calendar-time scale. Six sub-
jects are followed in a hypothetical clinical study. The exact observations
are indicated by solid dots, and the censored observations by hollow dots.
The dashed vertical line indicates the closing date of the study t∗. Time
t′ marks the drop out time for subject 4.

occur when an individual withdraws from the study or when a subject is lost to follow-

up. For example, subject 4 was initially included in study, but dropped out after t′

(before the end of study). Hence, the survival times for subjects 1, 3, 4, and 5 are all

right-censored observations. For these censored observations, we can only conclude that

the true survival times are at least longer than the observed ones.

For statistical and survival analysis, one often focuses on the time from entry to the

event of interest. Each individual will then have his or her own starting point, with time

zero being the time of entrance into the study. Figure 4.2 shows the observations of the

same hypothetical clinical study in its study-time scale.

There are other types of censoring scheme, such as left censoring or interval cen-

soring. In left censoring scheme, we only know a subject has experienced the event of

interest prior to the start of the study, but the exact event time is unknown. For instance,

in a study to determine the distribution of the time until first marijuana use among high

school boys [25], the question was asked, “When did you you first use marijuana?” One

of the responses was “I have used it but cannot recall just when the first time was.” A

boy who chose this response is indicating that the event had occurred prior to the boy’s

age at interview but the exact age at which he started using marijuana is unknown.
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Study time

Subject

1

2

3

4

5

6

δ1 = 0

δ2 = 1

δ3 = 0

δ4 = 0

δ5 = 0

δ6 = 1

U1 U2 U5U4, U60

Figure 4.2. Illustrating the same observations in Figure 4.1 with the
study-time scale. The time “0” for each subject is its entry to the study.
The exact observations are indicated by solid dots, and the censored ob-
servations by hollow dots.

The interval censoring is a more general type of censoring when the event is only

known to occur within an interval. Such interval censoring occurs when subjects in a

clinical trial or longitudinal study have periodic follow-up and the subject’s event time

is only known to fall in an interval (tL, tR], where tL and tR are the left endpoint and

right endpoint of the censoring interval [25]. This type of censoring may also occur

in industrial experiments where there is periodic inspection for proper functioning of

equipment items.

We assume the right censoring scheme in this chapter.

4.2.2. Definitions

Suppose T denote the event time, such as death or lifetime; C denote the censoring

time, e.g., the end of study. For right censoring scheme, the censoring time C is known

and its value is always smaller than the event time: C < T . Hence, the survival outcome

can be represented by a pair of random variables (U, δ). The event indicator δ represents

whether the observed survival time U corresponds to an exact observation (δ = 1) or a

censored observation (δ = 0). The value of U is equal to T if the event is observed, and

to C if it is censored. Mathematically, U and δ are defined as

U = min(T,C), (4.1)
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and

δ = I(T ≤ C) =











0, for censored observation,

1, for exact observation,

(4.2)

where I(·) is an indicator function. Using example of survival data in Figure 4.2, subjects

4 and 6 have the same observed survival time (U4 = U6), but their event indicators are

different (δ4 = 0, and δ6 = 1).

In summary, survival data can be represented by a triplet

(x1, U1, δ1), . . . , (xn, Un, δn), (4.3)

where xi ∈ Rd, Ui ∈ R+, and δi ∈ {0, 1}. Here x represents input features or covariates

(such as a patient’s clinical and demographic variables), U is time-to-event value, and δ

is event indicator (also known as censoring variable).

Next, we introduce a few basic parameters commonly used in survival analysis and

show they are interrelated. All functions introduced in this section are defined in domain

[0, t].

• Suppose f(t)1 is the probability density function (PDF) of random variable T ,

then the survival function is defined as the probability of surviving beyond time

t (or being event-free at t),

S(t) = Pr(T > t) =

∫ ∞

t
f(u) du. (4.4)

• Assuming that only one incidence could cause the death, the cumulative inci-

dence function (CIF) is the probability of death before time t,

F (t) = Pr(T ≤ t), (4.5)

and F (t) is the complement of the survival function S(t),

F (t) = 1− Pr(T > t) = 1− S(t). (4.6)

1We use f to denote admissible functions previously, but overload the notation here. It should be
distinguishable from the context.
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• Suppose the first derivative of F (t) exists, then the PDF of T can be found by

f(t) =
dF (t)

dt
= −

dS(t)

dt
, (4.7)

which satisfies

F (t) =

∫ t

0
f(u) du. (4.8)

• The hazard function h(t) is the conditional probability of death occurring be-

tween (t, t+∆t) given survival at least to time t,

h(t) = lim
∆t→0

Pr(t ≤ T < t+∆ | T ≥ t)

∆t
=
f(t)

S(t)
. (4.9)

The hazard function is the instantaneous death rate for an individual who has

survived to time t.

4.2.3. Remarks

• Hazard function and survival function

It can be shown that the hazard function completely describes the survival

function,

h(t) =
f(t)

S(t)
=

1

S(t)
lim
∆t→0

S(t)− S(t+∆t)

∆t
= −

d

dt
logS(t). (4.10)

Then integrating both sides of (4.10) leads to

S(t) = exp

(

−

∫ t

0
h(u) du

)

. (4.11)

• CIF, hazard function, and survival function

From (4.9) we have f(t) = h(t)S(t). Therefore,

F (t) =

∫ t

0
f(u) du =

∫ t

0
h(u)S(u) du. (4.12)

Combining (4.11) with (4.12) gives

F (t) =

∫ t

0
h(u) exp

(

−

∫ u

0
h(v) dv

)

du. (4.13)

• Cause-specific hazard function and CIF



4.2. SURVIVAL ANALYSIS 44

If there are more than one cause of death D, we define a cause-specific

hazard function as the instantaneous risk of dying of cause k,

hk(t) = lim
∆t→0

Pr(t ≤ T < t+∆t,D = k | T ≥ t)

∆t
. (4.14)

We also have

h(t) =

m
∑

k=1

hk(t), (4.15)

as the death must be due to one (and only one) of the m causes. Similarly, the

cause-specific CIF Fk(t) is defined as

Fk(t) =

∫ t

0
hk(u)S(u) du, (4.16)

and the sum of all cause-specific CIF is the complement of the survival function,

1− S(t) =
m
∑

k=1

Fk(t). (4.17)

4.2.4. Classical Survival Analysis

We briefly introduce the nonparametric approach and the Cox proportional hazards

model in this section, as both are frequently used in survival analysis. One of the non-

parametric approaches to estimate the survival function S(t) from a sample of censored

survival data is the Kaplan-Meier estimator [25, 30, 24].

Let N(t) count the number of occurrences of the event in [0, t], whereas Y (t) is the

number of individuals at risk “just before” time t. Without loss of generality, we write

T1 < T2 < · · · < Tn for the ordered times when an occurrence of the event is observed,

that is, for the jump times of N .

Suppose we partition the time interval [0, t] into a number of small intervals 0 < t1 <

· · · < tK = t, the survival function S(t) can be expressed as

S(t) =
K
∏

k=1

S (tk | tk−1) , (4.18)

using the multiplication rule for conditional probabilities. Here S(v | u), for v > u, is

the conditional probability that the event will occur later than time v given that it has

not yet occurred by time u.
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If no event is observed in (tk−1, tk], we estimate S (tk | tk−1) by 1, whereas if an event

is observed at time Tj ∈ (tk−1, tk], a natural estimate of S (tk | tk−1) is

1−
1

Y (tk−1)
= 1−

1

Y (Tj)
. (4.19)

Then we obtain

Ŝ(t) =
∏

j:Tj≤t

[

1−
1

Y (Tj)

]

, (4.20)

which is the Kaplan-Meier estimator.

The Cox proportional hazards model investigates the relationship between the death

and possible explanatory variables, x = (x1, . . . , xd). These variables are called the co-

variates in the survival analysis and also known as the features in the predictive learning.

The Cox model is based on two key assumptions [25, 30, 24]:

(1) the effect of covariates is assumed to be additive and linear on a log-hazard

scale;

(2) the ratio of the hazards of two individuals is assumed to be the same at all

times.

The hazard function at time t for an individual with covariates x is assumed to be

h(t,x) = h0(t) e
β′

x, (4.21)

where h0(t) is the unspecified (nonnegative) baseline hazard function and β is a vector of

regression coefficients. The coefficients vector β is estimated by maximizing the partial

likelihood

L(β) =
K
∏

j=1

[

exp(β′xj)
∑

l∈Rj
exp(β′xl)

]

, (4.22)

or the partial log likelihood

l(β) =
K
∑

j=1

log

[

exp(β′xj)
∑

l∈Rj
exp(β′xl)

]

, (4.23)

where Rj represents all subjects at risk at the jth failure time and K ≤ n is the number

of distinct failure times.
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The details for estimating h0(t) are described in [24, 25]. However, we provide a

simple interpretation here. The baseline hazard function h0(t) can be considered as the

proportion of at risk subjects that fail at ti. Precisely, we have

h0(ti) ∝
di
ri
, (4.24)

where di is the number of subjects fail at ti and ri is the number of subjects at risk. Hence,

the estimates of h0(t) will be limited to h0(T1), h0(T2), . . . , h0(TK), and we normally

assume h0(t) remain unchanged for Ti < t < Ti+1.

Combining (4.11) and (4.21), we have the following survival function based on the

Cox model,

S(t,x) = exp

(

−

∫ t

0
h(u) du

)

= exp

(

−

∫ t

0
h0(u) e

β′
x du

)

. (4.25)

Figure 4.3 shows the examples of estimated survival function. Specifically, the survival

functions for six individuals, S(t,x1), . . . , S(t,x6), are plotted from day 0 to day 280.
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Figure 4.3. Estimated survival functions based on Cox model.
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It should be noted that the classical survival analysis is not designed to predict events.

It is primarily used to estimate a survival curve which measures the probability that an

event has not occurred by time t, taking all previous events and censored observations

into account.

4.3. Problem Formalization

In many applications, the goal is to predict survival at a pre-specified time point,

denoted as τ . This time point is called the prediction time in this chapter. The pre-

diction time normally varies from one study to another. For example, in a study about

acute cancer, prediction time τ could be three or six months after initial diagnosis. Al-

ternatively, for the study of a chronic disease, the value of τ can be five years. For the

purpose of this chapter, we assume that the value of prediction time is specified and

known based on medical knowledge. Next, we describe a possible formalization of this

survival prediction problem, leading to a binary classification formulation.

Our goal is to estimate a classifier f(x) that predicts a subject’s status at prediction

time τ based on the input (or covariates) x, given training (past) survival data

(x1, U1, δ1, y1), . . . , (xn, Un, δn, yn), (4.26)

where xi ∈ Rd, Ui ∈ R+, δi ∈ {0, 1}, and yi ∈ {+1,−1}. Note that the observed survival

time Ui and event indicator δi will only be available for training, but not for prediction

(or testing stage). The training data in (4.26) include the class labels (subjects’ statuses)

yi which do not appear in the survival data triplet (4.3).

The status of a subject at prediction time τ can be encoded as a binary class label

via the following:

y =











+1, if U < τ,

−1, if U ≥ τ,

(4.27)

This encoding scheme is illustrated in Figure 4.4 using the observations of a hypothetical

study in Figure 4.2. This encoding naturally assigns class labels to exact observations

(δ = 1, such as subjects 2 and 6 in Figure 4.4) without ambiguity. As for the censored

observations (δ = 0), if U > τ such as subject 5, we can still safely assign the class label



4.4. MODELING OF SURVIVAL DATA 48

y5 = −1. Nonetheless, the class labels for subjects 1, 3, and 4 are not well-defined as

the true survival times can be longer than τ . Clearly, this uncertainty in class labels for

censored training samples does not appear in standard machine learning classification

problems. So the challenge is to develop new classification formulations that incorporate

the survival time information and the uncertain nature of censored data.

Study time

Subject
y = +1 y = −1

1

2

3

4

5

6

δ1 = 0

δ2 = 1

δ3 = 0

δ4 = 0

δ5 = 0

δ6 = 1

U1 U2 U5U4, U6 τ0

?

?

?

Figure 4.4. Example of survival data under the predictive problem set-
ting. The goal is to find a model f(x) that predicts a subject’s status at
pre-specified prediction time τ . The “?” marks indicate the correspond-
ing class labels are not well-defined.

4.4. Modeling of Survival Data

The goal of modeling survival data is to estimate a classifier that predicts a subject’s

status at some pre-specified prediction time τ . One classical approach in statistics es-

timates a survival function which provides the probability of survival as a function of

time. Then a simple thresholding rule can be used to determine the binary status at time

τ . As for machine learning approaches, there are three strategies for modeling survival

data (x, U, δ, y) under the classification setting. The first one learns with (x, y) only.

The second incorporates both U and δ as privileged information into learning, whereas

the third utilizes only U as privileged information.
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4.4.1. Classical Approaches

Classical approach in statistics for modeling survival data aims at estimating a sur-

vival function S(t), which is the probability that the time of death is greater than a

certain time t, or Pr(T > t). More generally, the goal is to estimate S(t,x), a survival

function conditioned on subject’s characteristics, where the characteristics are denoted

as feature vector x.

Assuming that the probabilistic model S(t,x) is known, or can be accurately esti-

mated from available data, this model provides a complete statistical characterization of

the data. In particular, it can be used for prediction and for explanation (e.g., identifying

input features that are strongly associated with an outcome, such as death).

The Cox modeling approach has been widely used to construct the survival function

S(t,x), based on the proportional hazards model. We propose using Cox model under

the predictive setting via a simple thresholding rule at time t = τ :

ŷi =











+1, if S(τ,xi) < r,

−1, if S(τ,xi) ≥ r,

(4.28)

where the threshold value r should reflect the misclassification costs given a priori. We

assume equal misclassification costs in this chapter, so the threshold level is set to r = 0.5.

This thresholding method is demonstrated in Figure 4.5 using the examples of sur-

vival function in Figure 4.3. Setting the threshold level to r = 0.5 gives the predictions

ŷ1 = ŷ4 = +1, and ŷ2 = ŷ3 = ŷ5 = ŷ6 = −1.

4.4.2. SVM-Based Approaches

There are three possible strategies for modeling survival data (x, U, δ, y) under the

classification setting. The first one is learning using (x, y) while ignoring survival time

U and event indicator δ. The second strategy incorporates both U and δ (known for

training samples) as privileged information into learning. The third is similar to the

second, but utilizes only U as privileged information. Detailed descriptions of these

strategies are provided next.
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Figure 4.5. Using Cox model in the predictive setting. Thresholding
each survival function (probability) at day 200 gives the predictions for
statuses. The threshold level is indicated with a dashed line at r = 0.5.

(1) The simplest way to model the survival data (x, U, δ, y) under standard classifi-

cation setting is to ignore both the survival time U and event indicator δ. Then

the simplified survival data, in the form of (x, y), can be modeled via standard

SVM with binary classification. This approach is used in our empirical compar-

isons presented later in Section 4.5 (under the name SVM linear or SVM rbf).

It may yield sub-optimal models, as we ignore the information about survival

time and event indicator. This SVM approach along with Cox modeling will be

used in Sections 4.5 as baseline performance indices.

(2) The second strategy incorporates both the observed survival time and event

indicator as privileged information into a classification formulation, which leads

to the SVM+ classifier. Before applying SVM+ to survival data, we need to

assign a certainty measure, denoted as c, to reflect and quantify the uncertain

nature of censored data (i.e., training samples with δ = 0). One rule is to set

the certainty of a subject being alive/dead at prediction time τ to be inversely

proportional to the (known) survival time. That is, certainty measure is defined
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as

c =
τ − U

τ
= 1−

U

τ
. (4.29)

Thus, if U is small, it is more likely this subject will not survive at time τ , and

c is close to 1. On the other hand, if U is very close to τ , this subject will be

either alive or dead at time τ with low certainty, as quantified by lower c-value.

We reproduce Figure 4.4 and indicate the certainty measure for each subject in

Figure 4.6. Note that we have c5 = 1 for the censored subject 5 with U5 > τ .

Even though subject 5 is censored, there is no ambiguity in its status at time

τ . Naturally, we also have c = 1 for all exact observations, such as subjects 2

and 6 in Figure 4.6.

Study time

Subject
y = +1 y = −1

1

2

3

4

5

6

c2 = 1

c5 = 1

c6 = 1

c1 = 1− U1/τ

c3 = 1− U3/τ

c4 = 1− U4/τ

U1 U2 U5U4, U6 τ0

Figure 4.6. The certainty measures for exact and censored observations.
For censored observations with U < τ , the certainty measure is c =
1− U/τ . The certainty measure is equal to 1 for exact observations and
censored observations with U > τ .

Therefore, the survival data (xi, Ui, δi, yi), i = 1, . . . , n, will be represented

as

(xi, τ − U1, c1, y1), . . . , (xn, τ − Un, cn, yn), (4.30)

for i = 1, . . . , n. In addition, the survival time and certainty measure can be

regarded as the privileged information under the SVM+/LUPI paradigm intro-

duced in Section 3.2. Specifically, the available survival data (x, τ −U, c, y) can

be considered as (x,x∗, y), where x∗ = (τ − U, c) is the privileged information.
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Hence the problem of modeling survival data can be formalized and modeled

using the SVM+ approach.

(3) The third strategy is to utilize only the survival time U , while ignoring the

event indicator δ. Then we consider

|c| =
|τ − U |

τ
(4.31)

as a confidence measure for a subject’s status at time τ , as shown in Figure 4.7.

Study time
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τ0

|c1|

|c2|

|c3|

|c4|

|c5|

|c6|

Figure 4.7. The univariate privileged information x∗ for LO-SVM is
defined as |c| = |τ −U |/τ for modeling the survival data. While ignoring
the censoring information, |c| is considered as a confidence measure.

For all exact observations, the interpretation of |c| is straightforward. How-

ever, for a censored observation, such as subject 3, |c3| should be viewed as an

upper bound on the confidence measure. In other words, our confidence level

in the status of subject 3 is at most |c3|. Similarly, |c5| is a lower bound for

subject 5, and our confidence level in the status of subject 5 is at least |c5|.

By ignoring the event indicator δ, we can translate the survival data (x, U, y)

into (x, |c|, y). Then x∗ = |c| is a univariate privileged information for the LO-

SVM introduced in Section 3.3. Particularly, the LO-SVM exploits the ordering

of training samples near the prediction time τ , e.g., samples with small |c| values.

On the other hand, training samples with large |c| values have only minor effect

on the solution of LO-SVM.
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4.4.3. Remarks

The differences between three proposed SVM-based approaches for modeling survival

data are summarized next:

(1) All three modeling approaches (namely, SVM, SVM+, and LO-SVM) estimate

a binary classifier f(x), and all these approaches use equal misclassification

costs (for uniform comparison in Section 4.5).

(2) For SVM, the observed survival time U and even indicator δ are not used. Still,

according to (4.27), the survival time information is partially reflected in the

class labels for training data.

(3) The definitions of certainty measure in SVM+ and confidence measure in LO-

SVM are similar. The certainty measure is defined for censored observations

with observed survival time shorter than prediction time, i.e., δ = 0 and U < τ ,

such as subjects 1, 3, and 4 in Figure 4.4 or 4.6. However, the confidence

measure is defined for all subjects as illustrated in Figure 4.7.

(4) The LO-SVM effectively utilizes only the time information in estimating f(x).

(5) The SVM+ approach can incorporate different types of privileged information.

That is, it can use only the survival time (just like the LO-SVM), or use both

survival time and certainty measure as the privileged information. The two

ways of utilizing the privileged information with SVM+ are included in our

empirical comparisons presented later in Section 4.5, under the names SVM+1

and SVM+2. Precisely, we have x∗ = τ −U for SVM+1 and x∗ = (τ −U, c) for

SVM+2.

(6) In fact, the SVM+ approach can be readily extended to incorporate any addi-

tional privileged information besides the censoring and survival time. For ex-

ample, additional privileged information may include future clinical information

(after initial diagnosis). Also refer to the examples introduced in Section 3.1.
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4.5. Empirical Comparisons

This section presents empirical comparisons using classical Cox regression, standard

SVM, and the proposed LUPI-based approaches for modeling survival data. All compar-

isons adopt linear parameterization for standard SVM, LO-SVM, and SVM+, because

our synthetic data will be generated using a linear model, and also because the Cox

regression assumes linear parameterization. Meanwhile, the radial basis function (RBF)

kernel is used for the correcting space of SVM+.

4.5.1. Synthetic Datasets

The purpose of empirical comparisons using synthetic data is to understand the rel-

ative strengths and limitations of the LUPI-based methods. The synthetic datasets are

designed to include various statistical features, such as the number of training samples,

the proportion of censoring, and the noise level in the observed survival time. In practice,

the prediction time τ should be specified by the application domain experts, e.g., physi-

cians. For simplicity, our comparisons assume equal misclassification costs and balanced

data. Hence, the median of the survival times is chosen as the prediction time τ .

The synthetic datasets are generated following standard procedures used in [31, 32]:

(1) Set the dimension of input features d to 30, and generate x ∈ Rd. Every element

in x is a random number drawn from a uniform distribution in [−1, 1].

(2) Use the coefficient vector

β = [1, 1, 2, 3, 3, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

to generate the event time T via exponential distribution Exp((β,x) + 2), and

add the Gaussian noise N (0, σ2) to the event time T . Additionally, generate

the censoring time C via exponential distribution Exp(λ).

(3) Obtain the observed survival time U and event indicator δ based on the defi-

nitions in (4.1) and (4.2). The proportion of censoring in the training data is

controlled by the rate λ of the exponential distribution for censoring time C.
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(4) Use rule (4.27) to assign a class label to each input vector x. The median of

the observed survival times is selected as the prediction time τ , such that the

prior probability for each class is roughly the same.

(5) Generate 50, 50, and 2000 samples for training, validation, and testing, respec-

tively.

The training data are used for model estimation, validation data for model selection

(or parameter tuning), and test data for estimating the prediction error. Each experiment

is repeated ten times with different random realizations of (training, validation, test)

data, and the averaged test error and its standard deviation are reported.

The synthetic datasets conform to the probability hypothesis (i.e., exponential distri-

bution) of the statistical modeling method. Therefore, the Cox modeling method should

be competitive for such synthetic datasets.

We should point out that modeling survival data using the proposed classification

settings (as describe in Section 4.3) typically results in highly nonseparable classification

problems. This intrinsic nonseparability can be conveniently demonstrated by using

the histogram-of-projections technique for visual representation of the estimated SVM

model [3, 4, 33]. This technique displays the empirical distribution of distances between

(high-dimensional) samples and the SVM decision boundary (of a trained SVM classifier).

A typical histograms of projections for synthetic data are shown in Figure 4.8 for

different additive noise levels. The empirical distribution is represented in the form

of a univariate histogram of distances for training samples (or test samples), along with

SVM decision boundary (marked as “0” distance on x-axis) and SVM margin borders for

negative and positive classes (marked as “−1/+1”). Further, the x-axis of a histogram

represents a scaled distance between a high-dimensional feature vector and SVM decision

boundary. The y-axis represents the fraction of samples. The distance to the decision

boundary is scaled so that the margin borders always have values −1 or +1.

Both histograms show a significant portion of overlap between the positive (blue) and

negative (red) classes, implying that high test error rates can be expected, especially for
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Figure 4.8. Histograms of projections for training data with (a) σ = 0,
and (b) σ = 0.1. The positive class is shown in blue and negative class
in red. Margin borders correspond to −1/+1 (marked by dashed vertical
lines). The x-axis is the distance (scaled by margin size) and y-axis
represents the fraction of samples.

σ = 0.1. Empirical comparisons presented later in this section attempt to illustrate the

effect of a single design parameter on methods’ prediction capability.

• Number of Training Samples

To examine how the training sample size affects the prediction capability

(e.g., test error), we gradually increase the number of training samples from 50

to 500, and increase the size of validation set accordingly. The proportion of

censored observations is controlled around 16%, and the standard deviation of

noise σ is set to 0.1. The relative performance of the methods are summarized

in Tables 4.1, as a function of sample size. The empirical results shown in

Tables 4.1 include the averaged test error and its standard deviation, based on

ten random realizations of (training, validation, test) data.

As expected, the test error decreases for all methods when the number

of training samples is increased. Considering the baseline methods, the Cox

model and standard SVM have similar performance when the number of training

samples is less than 200. But, for large sample sizes, standard SVM performs

better than Cox.
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The LO-SVM outperforms the Cox model for all sample sizes. It also per-

forms better than the standard SVM for training sample size less than 250.

The LO-SVM and standard SVM have similar test errors for sizes larger than

250. This could be explained by noting that for large samples sizes, the relative

effect of using privileged information decreases.

Table 4.1. Test errors as a function of training sample size

(a) Training sample size less than 125

Sample size 50 75 100 125

Censoring % 17.80 17.20 16.20 16.16

Cox 31.9 ± 3.1 27.7 ± 3.0 26.4 ± 2.5 26.0 ± 2.7

SVM linear 30.5 ± 2.3 28.6 ± 3.0 26.9 ± 1.9 26.4 ± 2.4

LO-SVM 29.5 ± 2.8 26.4 ± 2.0 25.1 ± 1.6 24.9 ± 1.7

SVM+1 31.8 ± 4.4 30.6 ± 4.5 27.7 ± 2.2 26.4 ± 2.0

SVM+2 31.2 ± 3.7 29.3 ± 4.1 27.1 ± 3.4 25.8 ± 2.0

(b) Training sample size greater than 200

Sample size 200 250 400 500

Censoring % 15.70 15.80 16.65 16.22

Cox 23.9 ± 1.8 22.4 ± 2.0 21.9 ± 1.6 22.0 ± 1.8

SVM linear 22.3 ± 1.3 20.8 ± 1.5 19.9 ± 1.5 19.1 ± 1.3

LO-SVM 20.0 ± 0.8 20.8 ± 2.0 19.6 ± 1.4 19.1 ± 1.3

SVM+1 22.7 ± 2.4 21.5 ± 2.0 20.1 ± 0.9 19.8 ± 1.4

SVM+2 21.1 ± 1.9 19.7 ± 1.4 18.8 ± 1.3 18.2 ± 1.1

Further, LO-SVM has lower test error than SVM+1 regardless of sample

size. These results clearly demonstrate the advantage of using univariate priv-

ileged information via ordering scheme, rather than mapping it onto an one-

dimensional (1-D) correcting space.

However, when 2-D privileged information is used, then SVM+2 has the

best performance for training samples larger than 250. This can be explained

by the fact that SVM+2 has more tuning parameters than LO-SVM. Thus, a
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larger amount of training data is required for SVM+2 in order to estimate a

good classifier.

It worth noting that the standard deviations of test errors for SVM+1 and

SVM+2 are larger than that for LO-SVM when the training sample size is

less than 125. This hints that the model selection task for SVM+ is quite

challenging, and the estimated models are unstable.

• Proportion of Censoring

In order to investigate the effect of censoring on prediction capability, we

adjust the proportion of censoring in the training data, ranging from 0% to

39%. The proportion of censoring (or censoring rate) is controlled via the λ

parameter of a exponential distribution. The training and validation sample

sizes are 200, and the standard deviation of noise is 0.1 for all experiments.

Table 4.2 summarizes the experimental results as a function of censoring rate.

Table 4.2. Test errors as a function of censoring rate

λ 0 0.05 0.2 0.6 1.2

Censoring % 0.0 11.1 19.8 29.5 38.7

Cox 22.5 ± 1.4 23.0 ± 1.9 25.0 ± 1.4 28.3 ± 2.4 32.3 ± 1.1

SVM linear 21.9 ± 2.5 22.2 ± 2.2 23.6 ± 2.4 26.7 ± 1.7 30.3 ± 1.2

LO-SVM 20.0 ± 1.9 21.0 ± 1.8 22.1 ± 1.4 26.8 ± 2.6 30.9 ± 1.8

SVM+1 22.3 ± 1.9 22.9 ± 1.8 24.3 ± 1.8 28.1 ± 2.0 31.1 ± 1.4

SVM+2 21.9 ± 2.1 21.3 ± 1.5 22.3 ± 1.4 25.9 ± 1.5 29.0 ± 0.9

Comparing the two baseline methods, standard SVM performs better than

the Cox model in all censoring rate. Performance comparison between the LO-

SVM and the two baseline methods shows that the LO-SVM has lower test error

than the Cox model in all censoring rates, and standard SVM for censoring less

than 20% (or λ < 0.2). Note that, for small or zero censoring rate (i.e., nearly

all samples are exact observations), the survival time offers highly reliable privi-

leged information. The LO-SVM effectively utilizes this information for samples

close to decision boundary yielding superior generalization.
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On the contrary, for high censoring rates, the survival times tend to be

unreliable and inaccurate. Under such scenario, the ordering task for the LO-

SVM becomes rather difficult, and its (relative) performance deteriorates.

As for the SVM+ methods, SVM+1 performs better than the Cox model,

but cannot match standard SVM. However, SVM+2 works better than both

standard SVM and the Cox model. Especially for high censoring rates, SVM+2

method shows superior performance due to its ability to learn from the privi-

leged information in a more flexible correcting space.

• Noise Level in Survival Time

We adjust the standard deviation of noise to the survival time ranging from

0 to 0.5, and explore the effect of noise on the prediction capability. The training

and validation sample sizes are 200, and the proportion of censored observations

is controlled around 16%. Table 4.3 summarizes the test errors for all methods

as a function of noise level.

Table 4.3. Test errors as a function of noise level in survival time

Noise level σ 0 0.05 0.2 0.4 0.5

Censoring % 15.1 16.8 15.3 16.8 18.4

Cox 11.0 ± 0.8 17.9 ± 1.5 28.8 ± 1.5 34.4 ± 0.8 35.8 ± 1.4

SVM linear 14.7 ± 0.7 17.4 ± 1.5 27.5 ± 1.9 33.7 ± 1.3 34.2 ± 2.2

LO-SVM 13.1 ± 1.4 16.0 ± 1.4 27.5 ± 2.3 33.4 ± 1.5 34.7 ± 1.4

SVM+1 14.5 ± 1.1 17.5 ± 1.7 28.7 ± 2.0 33.9 ± 1.9 34.6 ± 1.8

SVM+2 15.2 ± 1.3 18.0 ± 3.2 25.7 ± 2.0 31.6 ± 1.5 32.4 ± 1.8

Obviously, when the noise level is reduced, the test error of all methods

will be reduced. With little or no noise in the survival time, the data samples

are generated from a distribution that matches the Cox modeling assumptions

exactly. Unsurprisingly, the Cox model yields the lowest test error in the case

of zero noise. However, for datasets with large additive noise, all SVM-based

methods are superior to the Cox model.
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Meanwhile, the LO-SVM performs better than the standard SVM for low

noise levels, corresponding to highly reliable privileged information. On the

other hand, the survival times with large noise cannot be reliably explained by

an ordering scheme, resulting in poor generalization.

Both SVM+1 and SVM+2 cannot match the two baseline methods and

LO-SVM for σ < 0.1. Still, under large noise settings (σ ≥ 0.2), SVM+2

method shows the best performance due to its ability to incorporate privileged

information in a 2-D correcting space. Note that a similar pattern of (relative)

performance between LO-SVM and SVM+2 has also been observed in Table 4.2.

• No Censoring

This experiment examines a special case of survival data, which contain

only exact observations. In this case, there is no censored observations and the

event indicator becomes noninformative. Effectively, the survival time is the

only privileged information in the training data. For this reason, only SVM+1

method is used but not SVM+2. Empirical results are summarized in Table 4.4

showing the test errors as a function of training sample size.

Table 4.4. Test errors as a function of training sample size without
censored data

(a) Training sample size less than 125

Sample size 50 75 100 125

Cox 29.2 ± 2.3 26.1 ± 2.4 22.7 ± 3.1 23.2 ± 2.9

SVM linear 29.8 ± 2.5 26.9 ± 2.8 23.7 ± 3.5 22.3 ± 1.6

LO-SVM 27.9 ± 2.7 25.1 ± 2.7 20.5 ± 3.3 20.5 ± 1.1

SVM+1 30.2 ± 3.6 27.7 ± 4.5 25.3 ± 4.1 23.1 ± 1.7

(b) Training sample size greater than 200

Sample size 200 250 400 500

Cox 17.9 ± 1.4 18.9 ± 2.5 18.9 ± 1.1 17.1 ± 2.0

SVM linear 19.0 ± 1.4 18.2 ± 1.7 17.0 ± 0.8 16.5 ± 1.2

LO-SVM 17.1 ± 1.4 16.5 ± 1.2 16.0 ± 1.0 15.4 ± 1.2

SVM+1 18.2 ± 1.5 18.2 ± 1.7 17.4 ± 0.7 16.4 ± 1.1
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Considering the results in Table 4.1 and 4.4 for the two baseline methods,

the Cox model is only better than standard SVM for training data without

censored observations and size no more than 100.

These results also show that the LO-SVM outperforms either standard SVM

or the Cox model regardless of training sample size. A survival dataset with-

out censored data is considered as the best scenario for the LO-SVM, mainly

because the observed survival times are the true survival times and they can

be translated into highly accurate confidence measures for class labels. There-

fore, using these reliable confidence measures for ordering would achieve good

generalization.

As for SVM+1 method, its performance is not as good as the LO-SVM,

and even no better than the two baseline methods. The performance difference

between SVM+1 and LO-SVM also indicates that the training errors (or slack

variables) cannot be adequately modeled with univariate privileged information

with nonlinear mapping in the correcting space. Hence, the ordering scheme in

LO-SVM is a better choice for utilizing the univariate privileged information.

4.5.2. Real-Life Datasets

This section describes the empirical comparisons for three real-life datasets in the

Survival package of R [34]. In all comparisons, both SVM+1 (1-D privileged information)

and SVM+2 (2-D privileged information) use linear kernel for the decision space and

RBF kernel for the correcting space. For standard SVM and LO-SVM, both linear and

RBF kernels are studied. For all experiments, the median of the observed survival times

is chosen as the prediction time τ such that the classification dataset is balanced.

Parameters for SVM-based methods are tuned via a resampling technique. Our

experimental setup employs a double resampling procedure [3]. The estimation of the

test error for a learning method is performed in the first level of resampling, whereas

the tuning of model parameters takes place in the second level. Within each level of the

double resampling procedure, a five-fold cross-validation is used [3].

Since there is no well-defined class labels for censored observations with U < τ as

illustrated in Figure 4.4, the test errors are reported for samples with well-defined labels,



4.5. EMPIRICAL COMPARISONS 62

which include the exact observations and censored observations with U ≥ τ . In addition,

tuning parameters are chosen based on the validation error for samples with well-defined

labels.

Next, we briefly introduce the real-life datasets used for comparisons.

• The Veteran dataset was collected in the Veterans’ Administration Lung Cancer

Study for a randomized trial about two treatment options [34]. There are 137

instances (observations) in this dataset, each with 10 attributes. Less than 7%

of the instances are censored. Among the nine censored instances, an observed

survival time is less than the prediction time. In other words, only one instance

in this dataset corresponds to indeterminate class label.

• The Lung dataset studied the survival and daily activities of patients with

advanced lung cancer, based on a study by the North Central Cancer Treatment

Group (NCCTG) [34]. There are 167 instances in this dataset, each with 8

attributes. Approximately 28% of the instances are censored, and 21 censored

instances are associated with indeterminate class labels.

• The PBC dataset was collected between 1974 and 1984 by the Mayo Clinic

in a trial about primary biliary cirrhosis (PBC) of the liver [34]. There are

258 instances in this dataset, each with 22 attributes. More than 50% of the

instances are censored, of which 54 are not associated with well-defined labels.

Table 4.5. Summary of the statistical properties of survival datasets

Dataset Veteran Lung PBC

Size 137 167 258

Attributes 10 8 22

τ (days) 80 269 1831

Censored % 6.57 28.14 56.98

Uncertain % 0.7 12.6 20.9

The statistical properties of the three datasets are summarized in Table 4.5. The

prediction time τ (in days) is the median of the observed survival times. The proportions
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of censored observations are shown in the row with “Censored %” label. The percentage

of instances with uncertain class labels are listed in the row with “Uncertain %” label.

Table 4.6. Experimental results for survival datasets: linear models

Dataset Veteran Lung PBC

Cox 23.4 ± 4.6 43.3 ± 5.6 34.3 ± 7.1

SVM linear 27.3 ± 5.7 40.8 ± 8.2 32.2 ± 6.4

LO-SVM linear 39.2 ± 10.4 46.7 ± 8.0 23.4 ± 6.3

SVM+1 32.7 ± 5.4 43.3 ± 4.8 21.7 ± 6.9

SVM+2 31.2 ± 9.5 37.5 ± 8.3 19.0 ± 8.3

• The first part of comparisons is focused on methods using the linear kernel, and

the experimental results are summarized in Table 4.6, which shows the average

and standard deviation of test error estimated via five-fold cross-validation.

Prediction performance of the baseline methods (Cox and standard SVM)

varies across different datasets. While the Cox model has the lowest test error

for the Veteran dataset, the standard SVM is slight better than the Cox model

for two other datasets. This is expected due to the low censoring rate in the

Veteran dataset.

Interestingly, the LO-SVM is only better than the standard SVM for the

PBC dataset, and its performance is poor in a low-censoring scenario. This is

not consistent with the conclusions in Sections 4.5.1. Our interpretation is as

follows.

By examining the distribution of the survival times in the Veteran dataset,

we found out that the majority of the survival times is close to the prediction

time τ = 80. Consequently, most of the confidence measure (univariate time

privileged information) values |c| are small, making the ordering task for LO-

SVM difficult. Hence, a single error in the ordering may potentially lead to

multiple errors. The failure of the ordering task in LO-SVM is also reflected in

the standard deviation of the test error, which is the largest among all methods.
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Further, the LO-SVM is outperformed by SVM+1 and SVM+2, showing its

limitation for the three datasets we examined. On the contrary, the SVM+2

shows the best test error for two datasets, suggesting that it is best suitable

for survival data with high censoring rate. Additionally, the SVM+2 shows

its advantage in utilizing 2-D privileged information for high-dimensional data,

as observed in the PBC dataset. These conclusions for SVM+2 are consistent

with those for the synthetic data in Section 4.5.1.

• In the second part of comparisons, we focus on methods using nonlinear mod-

eling (via RBF kernel). The experimental results are summarized in Table 4.7.

Both standard SVM and LO-SVM with RBF kernels perform better than

their linear counterparts. Moreover, the LO-SVM with RBF kernel has the

lowest test error for the Lung dataset, which suggests nonlinear nature of the

data. Arguably, the performances of SVM+1 and SVM+2 can be improved by

using the RBF kernel, but at the expense of additional parameter tuning.

Finally, for the Veteran dataset, standard SVM with linear or RBF kernel

performs better than LO-SVM, SVM+1, and SVM+2. This can be explained

by the fact that simpler models have better generalization performance even if

they do not have the survival time information. In fact, based on our encoding

of class labels in (4.27), the survival time information is largely incorporated in

the class labels already.

Table 4.7. Experimental results for survival datasets: nonlinear models

Dataset Veteran Lung PBC

SVM rbf 25.8 ± 8.8 37.7 ± 7.4 33.0 ± 4.9

LO-SVM rbf 28.1 ± 7.3 34.2 ± 6.2 24.3 ± 5.1

SVM+1 32.7 ± 5.4 43.3 ± 4.8 21.7 ± 6.9

SVM+2 31.2 ± 9.5 37.5 ± 8.3 19.0 ± 8.3
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4.6. Summary

This chapter introduces predictive modeling of survival data as a binary classification

problem. This approach may be useful when the goal of modeling is to predict patients’

condition (alive/dead) at a pre-determined prediction time. For example, the prediction

time can be three months after surgery, six months after initial diagnosis, or two years

after transplantation. Our modeling approach may help clinicians (and patients) to

promote personalized care and strengthen treatment/recovery post diagnosis and surgery.

From the machine learning perspective, our modeling approach implements new for-

malization for modeling complex biomedical data which may incorporate future, cen-

sored, or unknown data, in addition to (traditional) labeled training data. The chapter

describes predictive modeling of survival data using the LUPI paradigm. We also present

two particular implementations of LUPI for modeling survival data. The first approach

called SVM+ incorporates information about survival time and censoring in order to

estimate an SVM classifier. The second approach, LO-SVM, utilizes only the survival

time information.

In addition, the chapter describes the advantages and limitations of these modeling

approaches by using empirical comparisons of several synthetic and real-life datasets.

In general, the empirical results show that the proposed LUPI-based methods seem to

be very effective (as opposed to classical Cox regression model) when the survival time

does not meet the classical probability hypothesis, e.g., the exponential distribution.

Since the LUPI-based methods contain privileged information during the training phase,

making use of this additional information properly is the key to outperform standard

SVM. However, compared to LUPI-based methods, standard SVM is a simpler approach,

and it may have better generalization performance for some datasets.

Further, relative performance between two LUPI-based methods is strongly affected

by the statistical characteristics of survival data, such as the amount of censored data

and additive noise in survival time. In particular, the LO-SVM is very effective when

the proportion of censoring in the training data is small, or when the additive noise in

the survival time is small. Both situations enable reliable ordering of training samples
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using survival time information, under this formalization, resulting in better classification

models.

Finally, SVM+ formalization has better (relative) performance for survival data with

high censoring rate, or with very noisy survival time, due to the fact that privileged

information is modeled in the correcting space via nonlinear kernel.



Part 2

Group Learning



Chapter 5

Overview

Sparse high-dimensional data are common in modern machine learning problems

where the dimensionality of data samples d is much larger than the training sample size

n. Estimation of predictive classification models from high-dimensional data is becoming

increasingly important in various applications such as gene micro-array analysis, image

based object recognition, functional magnetic resonance imaging (fMRI), etc.

In micro-array data analysis, technologies have been designed to measure the gene

expression levels of tens of thousands of genes in a single experiment. However, the

sample size in each dataset is typically small ranging from tens to low hundreds due

to the high cost of measurements. Similarly, in brain imaging (or fMRI) studies the

dimensionality of the input data vector is very high (the number of voxels d ∼ 10000), but

only a few hundred of two-dimensional (2-D) or 3-D images (n ∼ 100) are available. Such

sparse high-dimensional data present new challenges for classification learning methods.

Most approaches for learning with high-dimensional data focus on improving existing

inductive methods that try to incorporate a priori knowledge about the optimal model [3,

35, 36]. Common examples include:

(1) clever preprocessing and feature extraction techniques that incorporate application-

domain knowledge into the selection of a small number of informative features;

(2) selection of good kernels in SVM methods;

(3) specification of the prior distributions in Bayesian methods.

These techniques have been successfully used in many real-life applications [37].

Among all these approaches, using feature selection techniques to reduce the dimen-

sionality of data is an effective way for solving a problem. There are many potential ben-

efits of feature selection, such as facilitating data visualization and data understanding,
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reducing the measurement and storage requirements, reducing training and utilization

times, defying the curse of dimensionality to improve prediction performance [38].

Feature selection is a broad area of research. There are two main strategies for

feature selection using finite training data [4, 39]. The first strategy performs feature

ranking/selection prior to learning (model estimation). Such methods are known as filter

methods. Filter methods select a subset of “informative” features independently of the

classifier. Typically, filter methods explore the relation between each feature and the

output, rank all the features by a metric (or a statistical score), and select a predefined

number of top features. Popular metrics used for feature ranking are Fisher score [40],

information gain [38], or conditional mutual information [41], etc.

The second strategy performs feature ranking/selection as a part of learning and

provides optimal prediction performance for a given learning method. Hence, optimal

feature selection is a part of learning method itself. In this case, feature selection becomes

a part of model selection (complexity control) for a given dataset. Such methods are

known as wrapper methods. For wrapper methods, feature selection can be viewed as an

additional complexity parameter of a learning method. This complexity parameter can

be tuned using independent validation data, via resampling techniques, or via analytic

methods. Most wrapper methods try to find a good subset of features under some

measure by searching the space of feature subsets [39]. One simple greedy algorithm,

called backward elimination, starts with the full set of features, and greedily removes

the one that most improves performance, or degrades performance slightly. A similar

algorithm, called forward selection, starts with an empty set of features, and greedily

adds features.

Alternatively, we propose learning with high-dimensional data without feature selec-

tion. Our approach is to split all features into several groups, then a high-dimensional

feature vector x ∈ X can be transformed into several lower dimensional ones x′ ∈ X ′,

where x ∈ Rd, x′ ∈ Rd′ , and d′ < d. The process of learning, including model estimating

and prediction, will take place in a lower dimensional space X ′, rather than the original

space X.
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In order to illustrate the proposed strategy, consider the task of handwritten digit

recognition for digits 5 versus 8 in MNIST dataset. Each digit (5 or 8) is a 28×28 pixels

image as shown in Figure 5.1, and it can be represented as a real-valued vector of size

28× 28 = 784, i.e., x ∈ R784. Within this vector, each of the 784 components (features)

represents the pixel intensity in gray scale by a 8-bit integer. This is standard binary

classification problem, where digits 5 and 8 are labeled as negative and positive class,

respectively.

Figure 5.1. MNIST digits 5 (negative class) and 8 (positive class) of
size 28×28 pixels.

We can partition an image into four nonoverlapping patches, each with size 14×14

pixel, as illustrated in Figures 5.2 and 5.3. Specifically, x (a training image) is trans-

formed into {x′
1,x

′
2,x

′
3,x

′
4}, where x′

j ∈ R196, j = 1, . . . , 4. Then we estimate one

classifier using feature vectors in space X ′. Note that pixels in space X ′ are more highly

correlated than pixels in the original space X as they are close to one another.

This approach allows the reduction in the dimension of feature vector without losing

information due to feature selection. Further, the number of training samples can be

“increased” without utilizing external training data. The goal of this learning approach

is not a good prediction for each x′
j individually, but an accurate prediction for x. The

initial predictions are made for patches {x′
1,x

′
2,x

′
3,x

′
4}, and a final prediction for an (test)

image x is computed. Hence, we need to consider the predictions for patches jointly (as

a group), and use a postprocessing procedure to reconcile the four predictions.
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(a) (b)

(c) (d)

Figure 5.2. Partition digit 5 into four nonoverlapping patches of size
14×14 pixels.

(a) (b)

(c) (d)

Figure 5.3. Partition digit 8 into four nonoverlapping patches of size
14×14 pixels.

We refer to this approach as the Group Learning method. The Group Learning

method introduced in this thesis is mainly for classification problems, and we will focus

on improving the prediction performance.

Further, the proposed Group Learning method is equivalent (or similar) to a Convolu-

tional Neural Network (CNN) [42, 43]. Precisely, the transformation of high-dimensional

data corresponds to a convolutional layer and the postprocessing procedure is equal to

a pooling layer of a CNN. Certainly, we only incorporate the two layers once in our

strategy, whereas the two layers are introduced multiple times in a CNN. Two appar-

ent conveniences for the proposed approach are the lower requirement of computational

power and training data.
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In summary, we provide a general description of a novel learning paradigm for classi-

fication: Group Learning for high-dimensional data. Next, we will present two applica-

tions of Group Learning in Chapters 6 and 7. The first one is applying Group Learning

method for 2-D images, and the second is for 1-D signals.



Chapter 6

Group Learning for Images

6.1. Introduction

A theoretical framework for predictive learning based on the risk minimization ap-

proach is provided by VC-theory. VC-theory makes a strong argument that for finite

sample estimation problems one should always use the most appropriate direct formula-

tion of the learning problem. This principle can be also applied on the methodological

level of formalizing application-domain requirements [1, 44, 3, 4]. That is, for a given

application, one should first formulate an appropriate learning problem reflecting appli-

cation domain requirements, and only then develop (or select) learning algorithms for

this learning formulation.

In Chapter 5, we introduced a novel learning paradigm for classification called Group

Learning for high-dimensional data. This Group Learning approach allows us to reduce

the dimensionality of data without losing information due to feature selection, and in-

crease the number of training samples without utilizing external training data simulta-

neously.

In this chapter, we describe how the problem formalization is closely related to the

application domain. Specifically, we demonstrate how Group Learning is formalized and

developed for 2-D image problems. Empirical results show that Group Learning method

can help improve generalization for high-dimensional data with small training sample

size without feature selection.

The remainder of this chapter is organized as follows. Section 6.2 defines the formal-

ization of the Group Learning paradigm. Section 6.3 provides the qualitative analysis

on the Group Learning method. The empirical results are presented in Section 6.4 to
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illustrate the effectiveness of the proposed Group Learning method. Finally, a summary

is included in Section 6.5.

6.2. Problem Formalization

In this section, we present the formalization of Group Learning for high-dimensional

data (with limited training samples). Suppose every d-dimensional training sample is

represented as t samples of dimensionality d/t. Specifically, the training sample (x, y),

where x ∈ X and y ∈ {+1,−1}, can be considered as

(x′
1, y), (x

′
2, y), . . . , (x

′
t, y), (6.1)

with x′
j ∈ X ′, j = 1, . . . , t. Here, we have x′

j ∈ Rd/t, x ∈ Rd, and d/t < d.

The transformation above is equivalent to splitting d features into t subsets. Techni-

cally, it can be done by first ordering the features based on application domain knowledge

(a priori). Let us denote the “ordered” features in vector x as x(1), x(2), . . . , x(d). Then

vector x′
j can be formed by taking each t-th feature. That is,

x′
1 = (x(1), x(t+1), . . .),

x′
2 = (x(2), x(t+2), . . .),

...

x′
t = (x(t), x(2t), . . .).

Hence, a training dataset with size n can be transformed into a set of tn samples. The

goal of Group Learning is to estimate a single classifier using tn training samples, each

with dimensionality d/t. In contrast, standard machine learning approach (e.g., SVM)

attempts to estimate a classifier using n training samples, each with dimensionality d.

The training and test tasks for standard machine learning approach are illustrated

in Figure 6.1. Under the classification setting, the goal of learning is to estimate a

classifier f(x) using labeled training samples. This classifier should give good prediction

for future (test) inputs. Both model estimation and prediction (training and test tasks)

are performed in space X.
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Figure 6.2 illustrates the Group Learning approach for the case of t = 3. In this

approach, a labeled training sample x is first transformed into three lower dimensional

ones, i.e., x′
1, x′

2, and x′
3. Then the Group Learning approach estimates a classifier

f(x′) using all labeled training samples x′ (3n in total). In prediction (test) stage, an

unlabeled test sample x is transformed from space X to space X ′ as well. Therefore,

applying the estimated classifier to all “shorten” test inputs x′
j , j = 1, . . . , 3, will result

in three predictions ŷ1, ŷ2, and ŷ3. In order to obtain a prediction for the test sample x,

a postprocessing procedure for reconciling ŷ1, ŷ2, and ŷ3 into ŷ is required. One common

postprocessing procedure is the majority voting scheme. This scheme will be employed

in our experiments presented later in Section 6.4.

Training Data

Test Data

...

xy = −1

y = +1

Model

Estimation
Prediction

f(x)
ŷ

y =?

Figure 6.1. Standard machine learning approach estimates a classifier
using training samples in space X, and makes prediction for test samples
in space X.

{

{

y = −1

y = +1

x′

1

x′

2

x′

3
...

Model

Estimation
Prediction

Post-

Processing

f(x′) ŷ1, ŷ2, ŷ3
ŷ

{

y = ?

Figure 6.2. Group Learning approach first transforms the data from
space X to space X ′. Both model estimation and prediction are per-
formed in space X ′, and the predictions need to be reconciled with a
postprocessing rule. The illustration is for t = 3.
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The Group Learning approach is different from standard machine learning approach

in two aspects:

(1) First, training and prediction (testing) are performed for data in space X ′ which

has lower dimensionality than space X.

(2) Second, the objective of Group Learning is for accurate prediction for test inputs

in spaceX, rather than the predictions for those in spaceX ′ individually. Hence,

the role of the postprocessing is to treat the predictions for x′
j as a group and

combine them into one prediction ŷ.

We motivate the Group Learning approach using the handwritten digit recognition

problem and develop the framework. The standard binary classification problem is to

differentiate between images of digit 5 and digit 8 (in space X). To reduce the dimen-

sionality of an image, it makes intuitive sense to partition this image into several patches.

We can partition an image of size 28×28 pixels into four nonoverlapping patches of size

14×14 pixels, as shown in Figures 5.2 and 5.3. As a result, an image represented by

x ∈ R784 is transformed into {x′
1,x

′
2,x

′
3,x

′
4}, where x′

j ∈ R196, j = 1, . . . , 4.

We observe in Figures 5.2 and 5.3 that none of the patches x′
j is visually repre-

sentative to its corresponding digit. Yet, the goal is to learn with patches and make

good predictions for full images. Therefore, we need to ensure that each patch contains

sufficient information to be distinguished between the two digits. Our predictions for

{x′
1,x

′
2,x

′
3,x

′
4} do not have to be perfect. Suppose the majority voting is used as the

postprocessing rule, then the final prediction will be based on the “votes” from the four

predictions for {x′
1,x

′
2,x

′
3,x

′
4}. We can still make a correct prediction for an image as

long as there is no more than one prediction error for the four patches. If there were a

tie in the votes, the final prediction could be either digit 5 or 8 with equal probabilities.

6.3. Qualitative Analysis

In this section, we provide a qualitative analysis on the proposed Group Learning

method under the formalization introduced in Section 6.2. This formalization would

allow a tighter VC-bound. The VC-bound is a generalization bound for learning with
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finite samples, and it has been introduced in Section 2.3. We reproduce a complete

description here.

According to VC theory, for a binary classification problem, the following bound for

generalization ability of a learning method holds with probability of at least 1 − η for

all admissible function f(x, ω), including the function f(x, ω∗) that minimizes empirical

risk:

R(ω) ≤ Remp(ω) + Φ

(

h

n
,
log η

n

)

, (6.2)

where

Φ

(

h

n
,
log η

n

)

=

√

√

√

√

√

h

(

log
2n

h
+ 1

)

− log
η

4

n
. (6.3)

Here, h denotes the VC-dimension, n the training sample size. The term Φ is called the

confidence interval, since it estimates the difference between the training error Remp(ω)

and the true test error R(ω) of a classifier.

Consider the behavior of Φ as a function of sample size n, with all other parameters

fixed. Equation (6.3) shows strong dependency of the confidence interval Φ on n/h,

the ratio of the number of training samples to the VC-dimension [4]. Thus, we can

distinguish two main regimes:

(1) For large sample size, i.e., the ratio is large, the value of the confidence interval

Φ becomes small, and the empirical risk can be safely used as a measure of

prediction risk. This also implies that a classifier with good generalization is

possible.

(2) For small (or finite) sample size, i.e., when the ratio n/h is small, the value

of the confidence interval cannot be ignored. In other words, a classifier with

small training error Remp(ω) does not necessarily lead to good generalization

(or small test error).

Most high-dimensional datasets would fall in the second regime. That is, large value

of h with small sample size n yield small ratio n/h. Here, we assume h is proportional

to d. The precise relation between h and d for SVM classification is given in (2.5).

The proposed Group Learning method can increase the sample size while reducing the

dimension, and ultimately transform the data modeling problem into the first regime.
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The benefits of this strategy are twofold. First, the ordered features are highly

correlated, so we are able to reduce the dimension from d to d/t without losing important

information. Second, the training sample size “increases” from n to tn, and d decreases

to d/t. The ratio of the number of training samples to the VC-dimension is increased

from n/d to t2n/d.

We provide qualitative explanation here because the VC-bound assumes independent

identically distributed (IID) inputs, but in our setting patches during testing are not

really IID.

6.4. Empirical Results

This section presents empirical results to illustrate the effectiveness of the proposed

Group Learning method. We use images of handwritten digits 5 and 8 with size 28×28

pixels and partition each image into 4 patches as illustrated in Figures 5.2 and 5.3. The

experimental design follows the structures introduced in Figures 6.1 and 6.2 with t = 4,

and the models are estimated using linear SVM for both learning strategies. Hence,

standard linear SVM is the baseline model.

For this experiment, the following settings are used:

(1) image of digit 5: negative class (−1); digit 8: positive class (+1);

(2) number of training images: 10 (5 per class);

(3) number of validation images: 20 (10 per class, twice of the training images);

(4) number of test images: 500 (250 per class).

The effective training and validation sample sizes are 40 and 80, respectively. The

independent validation set is used for model selection. Specifically, the chosen parameter

should yield the lowest error rate for 80 samples in the validation set (or 4m patches if

there were m validation images). The standard linear SVM classifier will be estimated

using 10 training images without partitioning.

Each experiment is repeated 50 times for different random selection of the images, and

the average test error is reported. To gain better understanding about the errors, false-

positive (FP) and false-negative (FN) error rates for test data are reported separately:

(1) an FP error is defined as incorrect prediction for test digit 5;



6.4. EMPIRICAL RESULTS 79

(2) an FN error is defined as incorrect prediction for test digit 8.

We also gradually increase the number of training samples from 10 to 50, in order to

investigate the prediction capability under various sample sizes. The size of the validation

set is adjusted accordingly.

Next we provide experimental results for standard SVM and our Group Learning

method using linear kernel. Figure 6.3 shows the training FP and FN error rates as a

function of training sample size (per class). Both Group Learning and standard SVM

achieve relatively low training errors.
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Figure 6.3. The training FP and FN errors as a function of training
sample size (per class). The Group Learning method uses 4-patch (t = 4)
setting and the patch size is 14×14 pixels.

The test errors are for both methods are shown in Figure 6.4. The Group Learning

method achieves much lower test errors compared with standard SVM, especially for

small training sample size. Interestingly, the training error for Group Learning is higher
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than that for standard SVM when the training sample size is 5 images per class. How-

ever, Group Learning method has significantly lower test error. The results suggest the

effectiveness and capability of our Group Learning method in prediction.
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Figure 6.4. The test FP and FN errors as a function of training sample
size (per class). The Group Learning method uses 4-patch (t = 4) setting
and the patch size is 14×14 pixels.

To make the experiments more challenging, we down-sample the images to size 10×10

pixel (see Figure 6.5 for exemplary images). Then the experiments described earlier are

repeated for the resized digits 5 and 8. The training and test FP/FN error rates for

different training sample sizes are shown in Figures 6.6 and 6.7. Similar to the results

for 28×28 pixels (high resolution) images, Group Learning method applied to 10×10

pixels (low resolution) images yields higher training error but achieves lower test error

when the training sample size is less than 10 images per class. Overall, Group Learning

method usually has lower test error than standard SVM regardless the performance

during the training stage.
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Figure 6.5. MNIST digit 5 and 8 of size 10×10 pixels.
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Figure 6.6. The training FP and FN errors as a function of training
sample size (per class). The Group Learning method uses 4-patch (t = 4)
setting and the patch size is 10×10 pixels.

6.5. Summary

This chapter introduces and investigates a new learning paradigm: Group Learning

for high-dimensional data. Empirical results show improvement in test accuracy for

MNIST dataset.

Our Group Learning method first transforms each d-dimensional training/test sample

into t training/test samples of dimensionality d/t. The advantages of this step is that
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Figure 6.7. The test FP and FN errors as a function of training sample
size (per class). The Group Learning method uses 4-patch (t = 4) setting
and the patch size is 10×10 pixels.

it reduces the dimension of features and increases the number of training samples. The

Group Learning method estimates one classifier using all training samples (in lower

dimensional space X ′). Upon testing, t predictions for t test samples are considered as

a group, and combined with a postprocessing rule (majority voting) to obtain a final

prediction.

Empirical results in this chapter illustrate the usefulness of the proposed Group

Learning method, comparing with standard SVM. In general, the performance of Group

Learning method is affected by the level of correlation between features, and the number

of groups which contain the subsets of features.



Chapter 7

Group Learning for One-Dimensional

Signals

This chapter introduces an application of Group Learning for one-dimensional (1-D)

signals. A long duration of 1-D signal can be represented as a group of short nonoverlap-

ping windows, and the task of learning from consecutive windows fits into this framework.

Common examples include prediction of epileptic seizures from intracranial electroen-

cephalogram (iEEG), prediction of sudden down turns in the stock market, etc. In this

chapter, we will use prediction of epileptic seizures in heavily unbalanced classification

setting to demonstrate the formalization of Group Learning and evaluate the perfor-

mance of this new learning approach.

7.1. Introduction

There is a growing interest in data-analytic modeling for detection and prediction

of epileptic seizures from iEEG recording of brain activity [45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55]. Seizure prediction has the potential to transform the manage-

ment of patients with epilepsy by administering preemptive clinical therapies (such as

neuromodulation, drugs) and patient warnings [56].

It is commonly accepted that statistical characteristics of iEEG signal change prior

to seizures. However, robust seizure prediction remains a challenging problem, due to

the absence of long-term iEEG data recordings containing adequate seizures for training

and testing [55] and patient-specific nature of seizure prediction models [45]. Here, we

propose a Support Vector Machine (SVM)-based system for seizure prediction, where

the design choices and performance metrics are carefully chosen for clinical objectives.
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This chapter describes a data-analytic modeling approach for seizure prediction from

canine iEEG recordings (dogs with epilepsy). Using canine data are important due to

the biological similarity of canine and human seizures, and the availability of high-quality

canine iEEG data [46, 57, 58, 59]. Previous research strongly suggests that a successful

seizure forecasting should be subject specific [60, 52, 53, 61, 62]. That is, a separate

data-analytic model should be estimated for each dog (or for each human subject), using

only that dog’s past iEEG recordings as training data. The subject-specific or patient-

specific nature of data-analytic modeling implies the need for long recordings of iEEG

used as labeled training data.

Seizure prediction studies assume that there are three distinct “states” of brain

activity in subjects with epilepsy: interictal, preictal, and ictal. The task of seizure fore-

casting (or prediction) requires discrimination between interictal versus preictal states.

This clinical hypothesis can be empirically validated using previously recorded iEEG

segments classified (or labeled by a human expert) as interictal or preictal. Using these

past labeled data (aka training data), we estimate a data-analytic model for discriminat-

ing between interictal and preictal iEEG segments, in order to predict on future inputs

(or test inputs). Then, accurate prediction of test inputs (aka out-of-sample data) may

be used as the evidence for preictal state.

The task of discriminating between preictal and interictal states is called seizure pre-

diction or seizure forecasting (from iEEG signal). Thus, we adopt a binary classification

setting, where a classifier is estimated using training data, and then its prediction per-

formance is evaluated using out-of-sample test data. The training data represent 1 hr

segments obtained from a continuous stream of iEEG recording, and these 1 hr segments

are labeled as either preictal or interictal by human experts. That is, preictal segments

correspond to lead seizures (defined as seizures preceded by a minimum of 4-hour period

with no seizures), and interictal segments were chosen randomly from iEEG stream (but

restricted to be at least one week away from any seizure).

In many studies, the problem of seizure prediction has been formalized as classifica-

tion of short moving windows of iEEG signal (typically, 20 s long) [46, 47, 48, 49, 50].

This formalization is adopted mainly due to data-analytic reasons, since a single 1 hr
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segment contains 180 samples (corresponding to 20 s windows). Such a significant in-

crease in the number of training samples makes the classifier estimation/training possible.

Still, the goal of prediction is targeted at the 1 hr segments, not the 20 s windows in-

dependently. Hence, prediction of 1 hr segments can be formalized via Group Learning

introduced in Chapter 5. In contrast to 2-D inputs for Group Learning method presented

in Chapter 6, the inputs in this chapter are 1-D.

Additionally, since seizures are very rare events (for most patients and canines),

there is clearly an overabundance of available interictal data, but very few preictal data.

Therefore, it is common to preselect a ratio of interictal to preictal training data. This

asymmetric nature of seizure data is known as an unbalanced setting or unbalanced classi-

fication in data-analytic studies [3, 4]. The imbalance ratios used in our study typically

range from 8:1 to 10:1 (for different dog-specific models). Note that application of Group

Learning presented in Chapter 6 follows a balanced setting.

Unbalanced data modeling affects both training and testing stages, as well as the

choice of proper performance metrics. For example, wide availability of interictal data

implies that classification of interictal segments is intrinsically easier than classification

of preictal segments. This consideration may motivate certain modifications of SVM

classifiers and may also suggest using appropriate metrics for prediction performance.

The chapter is organized as follows. Section 7.2 presents proper formalization of

seizure prediction under predictive classification setting. Section 7.3 describes various

design choices for the proposed seizure prediction system, including data representa-

tion and feature engineering. Section 7.4 describes the proposed SVM system and the

experimental design. The postprocessing steps which are critical for robust prediction

performance are presented in Section 7.5. Section 7.6 presents empirical performance

evaluation using several canine datasets. Finally, a summary is presented in Section 7.7.

7.2. Problem Formalization

This section presents a statistical formalization for the problem of seizure prediction.

The same formalization can be also applied to similar problems involving prediction of



7.2. PROBLEM FORMALIZATION 86

rare events (also known as “abnormal” events), such as recurring neurological conditions,

prediction of stock market crashes, etc.

The main underlying assumption is that observations of 1-D signals preceding the

event of interest may contain informative value for prediction. For example, the preictal

state could be valuable for seizure prediction. It is natural to view such problems as

binary classification where the classifier tries to predict whether a rare event will happen

(or not happen) in a given future time period. This time period is known as prediction

horizon in seizure prediction problems. A formal definition of prediction horizon will be

given later in this section.

Formally, each 1 hr training segment can be denoted as (x, y), where x ∈ X and

y ∈ {+1,−1}. Using the concept of short (20 s) moving windows and following the

notation introduced in Section 6.2, (x, y) can be viewed as (x′
1, y), (x

′
2, y), . . . , (x

′
t, y),

with t = 180. Thus, n training segments can be transformed into a group of 180n

samples. Here, negative label y = −1 corresponds to normal (interictal) class, and

positive label y = +1 corresponds to abnormal (preictal) class. Furthermore, the goal is

to predict/classify future (unlabeled) segments. We require a prediction for test segment

x, but not 180 predictions for x′
j , j = 1, . . . , 180.

The challenging aspects of such “rare-event” predictions are due to several factors:

(1) The number of observed rare events in available data is very small. In other

words, for a preictal segment, only a few x′
j contain warning information about

seizure. Almost all x′
j in an interictal segment do not carry such information.

(2) The unknown distributions for x′
j from normal and abnormal classes are very

similar and highly overlapping.

(3) There also exists high variability in both normal and abnormal class distribu-

tions.

Since the training data are highly imbalanced and the class distributions are over-

lapping, there is always a trade-off between the false-positive (FP) and false-negative

(FN) error rates. Therefore, for most applications, the goal is to achieve high or 100%

prediction of positive examples (rare events) while keeping the FP rate at a mini-

mal/small/acceptable level.
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Although the classification of short moving windows of iEEG signal has been utilized

in many studies, it is not clear how accurate prediction of short windows is relevant to

the clinical objective of predicting 1 hr segments. In particular, during the operation or

test stage, a prediction is usually made for each new moving window. This results in a

large number of isolated mispredictions for 20 s windows. Typically, these mispredictions

adversely affect the prediction accuracy.

In order to address this problem, several previous studies adopted simple postprocess-

ing, such as three-out-of-five majority voting (over five consecutive predictions for 20 s

windows), or a Kalman filter to smooth out the classifier outputs during testing [48]. In

the proposed system, we differentiate between the time scales for SVM classification (20 s

windows) versus clinical prediction (1 hr segments). Hence, iEEG data are represented

in two time scales:

(1) Feature vectors x′ extracted from 20 s windows are used as inputs to SVM

classifier.

(2) One hour segments x (180 consecutive 20 s windows) are used for prediction

(or testing stage).

Thus, the prediction of 1 hr segments involves some extensive postprocessing, or majority

voting over 180 consecutive predictions for 20 s windows. These postprocessing rules

should reflect statistical properties of iEEG signals and also reflect the understanding of

SVM classifiers (for unbalanced data), as explained in Section 7.5.

Two additional design considerations important for seizure prediction include the

following:

(1) Preictal period (PP), or preictal zone, preceding a seizure. The duration of PP

is clinically unknown; however, it is implicitly defined by the duration/size of

labeled segments in the training data.

(2) Prediction horizon (PH) defined as time interval after a seizure prediction/warning

is made, within which a leading seizure is expected to occur. The PH is also

unknown but it cannot be shorter than the PP. Also note that it is much easier

to make predictions with very long PH. For example, one can predict reliably
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that the next seizure will occur sometime within the next year, but it is much

harder to predict that a seizure will occur within the next 2 hr.

These two design parameters, PP and PH, are clearly important for a successful

seizure prediction. Since the inherent variability of seizure prediction should be captured

via subject-specific modeling, we select fixed values of PP and PH for all patients/dogs.

Specifically, we use 1 hr PP—which effectively assumes that there is a “warning signal”

somewhere within 1 hr before a lead seizure. With regard to PH, our modeling approach

uses two possibilities (1 hr and 4 hr) during testing (or seizure prediction), reflecting the

intrinsic statistical variability of seizure data.

7.3. Feature Engineering

This section describes the available data and our choices of feature representations

used in this study [63].

7.3.1. Summary of Available Data

The available data for each dog are continuously recorded from 16 channels of raw

iEEG data sampled at 400 Hz. After preprocessing to remove discontinuities and large

artifacts, each 1 hr segment of iEEG data is labeled as “interictal” or “preictal” by

human experts. Here, a typical canine dataset may contain several leading seizures (1 hr

preictal segments) and about eight times more interictal segments.

Table 7.1 summarizes the number of interictal and preictal segments for the six dogs

in our analysis. All dogs recorded at least seven seizure episodes (preictal segments cor-

responding to leading seizures), except for Dog-M3 (having just three leading seizures).

Note that our modeling is performed at several time scales. That is, 20 s windows

of iEEG signal are used for classifier training (SVM model estimation), whereas predic-

tion/testing is performed for 1 hr segments (represented as a group of 180 windows).

Optionally, SVM system’s predictions for four consecutive 1 hr segments may be aggre-

gated to form a prediction for each 4 hr segment.
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Table 7.1. The number of interictal/preictal 1 hr segments for each dog

Dog Interictal Preictal

L2 152 19

L7 88 11

M3 15 3

P2 64 8

L4 56 7

P1 232 29

7.3.2. Feature Encoding

For data-analytic modeling, each moving window is represented as a set of input

features. One common choice is a set of spectral features calculated from the iEEG

signals. Standard Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz),

and Gamma (30–100 Hz) spectral bands are the most common frequency ranges used,

with some studies splitting the Gamma band into 3–4 subbands [46, 48]. Some studies

also use additional features such as autoregressive errors, decorrelation time, wavelet

coefficients, etc. [47]. These studies have not had the same level of classification accuracy

as studies that used only spectral features. Calculation of spectral features requires a

predefined time window, with each window resulting in one data sample representing

spectral features (for this window). The time window sizes vary from study to study,

and the common window size is 20 s (also used in our system). Note that using 20 s

windows as training samples for model estimation is also clinically plausible, since seizure

warning signals are often manifested as auras that last just a few seconds.

We represent each 1 hr iEEG segment as a group of 20 s nonoverlapping windows.

Further, we utilize three approaches to extract features from 20 s windows, as illustrated

in Figure 7.1:

(1) The iEEG signal within a 20 s window is first passed through six Butterworth

bandpass filters corresponding to six standard Berger frequency bands (0.1–

4 Hz, 4–8 Hz, 8–12 Hz, 12–30 Hz, 30–80 Hz, and 80–180 Hz). Then, the output

signals from the filters are squared to obtain the estimates of power in six



7.3. FEATURE ENGINEERING 90

bands. This procedure is repeated for 16 iEEG channels and yields a feature

vector with 96 elements, or x′ ∈ R96. This feature encoding will be referred

to as BFB throughout this chapter. The BFB encoding will be used to explain

postprocessing later in Section 7.5.

(2) The frequency spectrum of the iEEG signal is obtained by applying fast Fourier

transform (FFT) to each 20 s window. Next, the power in each Berger frequency

band is approximated by summing up the magnitudes of the spectrum in the

corresponding band. This procedure, indicated as FFT in this chapter, also

encodes the spectral contents in 16 iEEG channels as a feature vector x′ ∈

R96. Note that both BFB and FFT methods perform signal encoding through

power estimation. But the former method utilizes signal representation in time

domain, whereas the latter in frequency domain.

(3) XCORR calculates the cross-channel correlation of signals from two different

channels in order to measure their similarity. Given 16 iEEG channels, there

are 120 different pairs. Calculating the cross-channel correlations for all 120

pairs results in a feature vector x′ ∈ R120.

20 s

16 Channels
iEEG

6 Bandpass
Filters

FFT

Cross
Correlation

time

freq

Signal in Time
x′ ∈ R96

Power Spectrum
x′ ∈ R96

Correlation Matrix
x′ ∈ R120

Figure 7.1. Three feature encodings for iEEG data: BFB, FFT, and XCORR.
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7.4. SVM System and Experimental Design

We describe an SVM-based system for seizure prediction and our experimental design

in this section. The available iEEG data include preprocessed 1 hr segments labeled as

interictal or preictal. The data-analytic model should predict future (out-of-sample) 1 hr

test segments that were never used for model estimation. The proposed system assumes

1 hr PP and 4 hr PH [64].

7.4.1. Proposed System

In our system, an SVM classifier is trained using 20 s labeled windows and then used

to predict 1 hr unlabeled test segments, as shown in Figure 7.2 and 7.3.

Training Data
(20 s windows)

Model
Estimation

SVM
Classifier

Figure 7.2. Proposed system design for training stage.

1 hr Test Segment
(180 windows)

SVM Predictions
(for 20 s windows)

Post-
Processing

− Interictal

+ Preictal

? Unknown

Figure 7.3. Proposed system design for prediction/operation stage.

Many earlier SVM-based prediction systems used the same implementation for the

training stage, i.e., training an SVM classifier using labeled samples corresponding to

features extracted from short moving windows [46, 48, 50]. However, all these ear-

lier efforts aimed at achieving good prediction for 20 s windows, according to standard

classification setting adopted in machine learning [3, 4].

In contrast, our system aims to make predictions for 1 hr test segments. Hence,

during the operation stage shown in Figure 7.3, the system should assign the same class

label to all 20 s windows of an 1 hr test segment. This corresponds to the Group Learning

approach depicted in Figure 6.2, and it also involves postprocessing explained later in

Section 7.5.



7.4. SVM SYSTEM AND EXPERIMENTAL DESIGN 92

The design of our system and the utilization of Group Learning are driven mainly by

scarcity and poor quality of preictal data. That is, scarcity refers to very limited amount

of preictal data (about 3–11 seizure episodes), and “poor quality” denotes the fact that a

“seizure warning signal” may occur somewhere within the 1 hr training segment labeled

as “preictal.”

The limited amount and poor quality of preictal data contribute to the difficulty of

reliable seizure prediction. In our system, these negative factors are partially alleviated

by [64]:

(1) Large amount of interictal data, leading to highly imbalanced ratio of interictal

versus preictal data (typically, 8:1 to 10:1) during model estimation or training

stage.

(2) Proper specification of training (model estimation) and “successful prediction”

(or testing). This includes using different time scales for training and operation

stages (shown in Figure 7.2 and 7.3), and also additional postprocessing steps

critical for robust prediction, as discussed next.

From the clinical perspective, the problem of seizure prediction can be formalized

as predictive classification of 1 hr iEEG segments assuming 4 hr PH. Consequently, the

training data for model estimation include 1 hr segments labeled as preictal or interictal.

The system is designed to predict/classify continuous 1 hr test segments (as preictal or

interictal), signaling that a seizure will or would not occur in the next 4-hour period [64].

Hence, the test data consist of 4 hr test segments that should be classified (predicted)

as preictal or interictal. The system makes actual predictions for 1 hr test segments,

and then combines four predictions in order to predict a 4 hr segment in the following

manner:

(1) preictal, if at least one of the four consecutive 1 hr test segments is classified as

preictal; or

(2) interictal, if all four 1 hr test segments are classified as interictals.

Our system’s predictions are made in three time scales (20 s, 1 hr, and 4 hr) as

shown in Figure 7.4. The system makes predictions for 20 s windows, which are then
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aggregated into predictions for 1 hr segments. Finally, predictions for four consecutive,

nonoverlapping 1 hr test segments are combined into predictions for 4 hr segments.

1 hr20 s

++ + + + +++ + + + + + + + + + ++ +++++- - - - - - - - - - - - - - - - - - - - - - - -

1 hr

Prediction

1 hr

Prediction

1 hr

Prediction

1 hr

Prediction

4 hr

Prediction

Reliable Interictal
Reliable Preictal
Unknown

Interictal
Preictal

Figure 7.4. Predictive modeling in three time scales: 20 s, 1 hr, and 4 hr.

7.4.2. Prediction Performance Indices

The most common prediction performance metrics in machine learning are FP and

FN error rates. An FP error corresponds to incorrect prediction for a preictal segment.

An FN error is made when a system mispredicts a preictal test segment as interictal.

It is important to note that all performance metrics for seizure prediction are con-

tingent upon the predefined length of PP and PH. Many earlier studies report FP/FN

error rates without clearly defined PP and/or PH. Empirical results for our system’s

prediction performance (shown in Section 7.6) present FP and FN error rates for:

(1) 1 hr test segments, and

(2) 4 hr test segments (formed by combining predictions for four 1 hr segments).

Note that reporting FP and FN error rates is identical to reporting errors for interictal

test segments (FP) and for preictal test segments (FN). Further, we also report sensitivity
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(SS) and FP rate (FPR) per day, as both are commonly used in seizure prediction

research. The two sets of performance indices are in fact equivalent.

7.4.3. Experimental Design

This section describes experimental settings the system shown in Figure 7.2 and 7.3),

using the Dog-L4 dataset as an example. This dataset has seven 1 hr preictal segments

(correspond to seven recorded leading seizures), and about eight times more interictal

segments. The experimental design reflects both the clinical objectives (prediction of 1 hr

test segments) and data-analytic constraints (very small number of preictal segments in

the training data).

Based on these considerations, we adopted an unbalanced setting for training data

(over a balanced one). Under unbalanced setting, the amount of interictal (negative)

segments is about eight times more than that of preictal (positive) data. Since Dog-L4

dataset has seven seizures, 6 preictal along with 55 interictal 1 hr segments are used

for training (model estimation), and two unlabeled 1 hr segments are used for testing.

Under this experimental setting, testing is always performed using out-of-sample data.

This unbalanced modeling setup is summarized in Table 7.2, which shows the labels of

iEEG segments used for training and testing in each modeling experiment.

Table 7.2. Experimental design for Dog-L4 under the unbalanced set-
ting (The decimal labels encode 1 hr segments)

Experiment
Training set Test set

Interictal Preictal Interictal Preictal

1 2–56 2, 3, 4, 5, 6, 7 1 1

2 1, 3–56 1, 3, 4, 5, 6, 7 2 2

3 1, 2, 4–56 1, 2, 4, 5, 6, 7 3 3

4 1–3, 5–56 1, 2, 3, 5, 6, 7 4 4

5 1–4, 6–56 1, 2, 3, 4, 6, 7 5 5

6 1–5, 7–56 1, 2, 3, 4, 5, 7 6 6

7 1–6, 8–56 1, 2, 3, 4, 5, 6 7 7
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According to this experimental setting, we estimate seven different models and each

model is tested on its own test set. The final performance index is the prediction ac-

curacy, i.e., the number (or fraction) of accurately predicted test segments in all seven

experiments. Reporting prediction accuracy separately for interictal and preictal test

segments reflects a requirement that a good system should classify each iEEG segment

well, rather than many segments over a long observation period. This is because seizures

occur very infrequently, so a trivial decision rule “label every segment as interictal” will

yield quite high prediction accuracy (over long observation period), but it is clinically

useless [64].

Further, we discuss details of training the SVM model shown in Figure 7.2. The

SVM complexity parameter C is estimated via six-fold cross validation on the training

set [3, 4, 64], so that balanced validation data always include samples from one interictal

and one preictal segment. A six-fold cross validation is used because Dog-L4 training

data have six preictal segments. For other datasets, M -fold cross validation is used if

the training data contain M preictal segments. All SVM training and cross validation

are performed using equal misclassification costs.

There are three important points related to SVM modeling under unbalanced set-

ting [64]:

(1) Linear SVM parameterization is adopted, even though available training data

may not be linearly separable. Yet, introducing nonlinear kernels is avoided,

as it may result in overfitting, due to high variability of (very limited) preictal

training data.

(2) Balanced validation dataset was used for model selection (e.g., tuning C param-

eter). The decision to use balanced validation data reflects the clinical objective

that the system should accurately predict each test segment.

(3) Although SVM training is performed using equal misclassification costs, the

combination of using unbalanced training data and balanced validation data is

formally equivalent to using unequal misclassification costs [3].
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7.5. Postprocessing

During the test stage shown in Figure 7.3 (or Figure 6.2), the prediction of a 1 hr

test segment involves some kind of postprocessing or majority voting over all 180 win-

dows (comprising this 1 hr test segment). This postprocessing should be related to the

properties of binary SVM classifiers, conveniently represented using the histogram-of-

projections technique for visual representation of the trained SVM model [3, 4, 33, 64].

This technique has been introduced in Section 4.5.

A typical histogram of projections of the SVMmodel estimated using Dog-L4 training

data is shown in Figure 7.5. The training data correspond to high-dimensional feature

vectors for 20 s windows. As shown in Tables 7.1 and 7.2, the training data include

55 interictal and 6 preictal 1 hr segments, so it is very imbalanced. Note that a small

portion of the training interictal segment (in red) falls on the wrong side of the decision

boundary, indicating very small error rate (for 20 s windows). A larger portion of the

training preictal data (in blue) falls on the wrong side of the SVM model, suggesting

higher FN error rate. However, the histogram in Figure 7.5 indicates that interictal (red,

negative) and preictal (blue, positive) training samples are generally well separated by

the SVM model.

−10 −5 −1 0 1 5 10

0

0.1

0.2

Figure 7.5. SVM modeling for Dog-L4 dataset using BFB feature en-
coding. Histograms of Projections for training data. The preictal data
are shown in blue and interictal data in red. Margin borders correspond
to −1/+1 (marked by dashed vertical lines). The x-axis is the scaled
distance and y-axis the fraction of samples.
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The test data consist of one preictal and one interictal segment, and histograms for

such balanced test data are shown in Figure 7.6. The majority of samples for interic-

tal test segment falls on the correct side of the decision boundary “0.” However, the

histogram for preictal test samples is very unstable, i.e., it can be right skewed or, left

skewed with respect to decision boundary, or even may fall within the margin borders, as

shown in Figure 7.6a, 7.6b, and 7.6c, respectively. These observations can be used to im-

plement meaningful postprocessing rules for classifying 1 hr test segments, e.g., majority

voting over 180 predictions for all 20 s windows comprising 1 hr test segments.

In our system, we adopted the 70% majority threshold [64]. That is, if at least

70% of all SVM predictions for a given 1 hr test segment fall on one side of SVM

decision boundary, this segment is classified as Reliable Interictal or Reliable Preictal ;

otherwise, it is classified as Unknown. As shown in Figure 7.3, our system can make

three different predictions. For example, the histograms of the preictal test segments

(blue) in Figure 7.6a, 7.6b, and 7.6c will be classified as reliable interictal (an error),

reliable preictal, and unknown, respectively. On the other hand, all three interictal test

segments (red) in Figure 7.6 will be correctly predicted as reliable interictal.

The notion of reliable predictions for 1 hr test segments in our system is quantified as

the percentage of test inputs (20 s windows) falling on one side of the decision boundary,

as illustrated in Figure 7.7. Three important points about “reliable” predictions should

be highlighted:

(1) The reliability of interictal predictions is expected to be higher than that of

preictal predictions, since the histograms of projections for training interictal

samples are much more stable than those for preictal samples.

(2) Due to high confidence in interictal predictions (and low confidence in preictal

predictions), segments that cannot be predicted reliably as interictal should be

regarded as preictal. That is, 1 hr test segments classified as “unknown” in

our system (see Figure 7.3) will be always regarded as “preictal,” such as the

segment (in blue) shown in Figure 7.6c. Hence, the postprocessing decision

rules for test segments can be summarized as follows:
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Figure 7.6. SVM modeling for Dog-L4 dataset using BFB feature en-
coding. Histograms of Projections for test data. The preictal test seg-
ments (blue) will be classified as (a) reliable interictal (an error), (b) re-
liable preictal, and (c) unknown. All three interictal test segments (red)
will be correctly predicted as reliable interictal.
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An 1 hr test segment is classified as “interictal” if at least 70% of its

20 s windows are predicted as interictal; otherwise, this segment is

classified as “preictal.”

(3) The confidence of predictions can be also controlled by the threshold for mak-

ing prediction decision. In particular, instead of using SVM decision bound-

ary (marked as “0”) for classification decision, we can use the margin borders

“−1/+1,” as illustrated in Figure 7.8. That is, reliable predictions correspond to

test input samples falling on the correct side of SVM margin borders, whereas

predictions falling between the margin borders are regarded as “unreliable.”

These choices for threshold level have been discussed in [63, 64].

0−1 +1

Figure 7.7. Univariate histogram of projections for test samples whereas
the decision threshold for majority voting is taken relative to decision
boundary “0”.

7.6. Empirical Evaluation

This section describes prediction performance results for the proposed system using

experimental setup outlined in Section 7.4.3. These results illustrate the effect of sys-

tem’s design choices on its prediction performance. These design choices include both

preprocessing (e.g., three feature representations) and postprocessing (e.g., making pre-

dictions for 1 hr versus 4 hr test segments). As noted earlier in Section 7.4.1, seizure
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0−1 +1

Figure 7.8. Univariate histogram of projections for test samples whereas
the decision threshold for majority voting is taken relative to margin
borders (“−1” or “+1”).

prediction using 4 hr PH can be technically implemented by combining SVM predictions

for four consecutive 1 hr test segments. That is, a 4 hr PH is modeled via 4 hr test

segment, which is classified as preictal only if at least one of the four consecutive 1 hr

test segments is predicted as preictal.

7.6.1. One-Hour Versus Four-Hour Test Segment

Prediction results for Dog-L4 (using the experimental design shown in Table 7.2) are

summarized in Table 7.3. Specifically, Table 7.3 shows the prediction results for test

segments under three different feature representations. This table presents predictions

for four consecutive 1 hr test segments, treated independently, under “1 hr” column.

Combining these 1 hr predictions into a single prediction is shown under “4 hr” column.

Symbols -, +, and ? denote “reliable interictal,” “reliable preictal,” and “unknown”

predictions, respectively.

These results indicate very good (stable) predictions for interictal test segments,

and rather unstable performance for preictal segments. In particular, the patterns of

1 hr predictions for preictal segments vary significantly under three feature encodings.

However, most preictal test segments are correctly classified when four 1 hr predictions

are combined together. For example, results in Table 7.3 under the FFT feature encoding

indicate 100% prediction accuracy for 4 hr preictal segments. Further, the prediction
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Table 7.3. Predictions for 1 hr and 4 hr segments via different feature
encodings for Dog-L4 (Symbols -, +, and ? denote reliable interictal,
reliable preictal, and unknown, respectively)

Features BFB FFT XCORR

Segments Interictal Preictal Interictal Preictal Interictal Preictal

Exp 1 hr 4 hr 1 hr 4 hr 1 hr 4 hr 1 hr 4 hr 1 hr 4 hr 1 hr 4 hr

1 ---- - -?+? + ---- - -+++ + ---- - -++? +

2 ---- - -+?? + --?- + ++++ + ---- - ?+?? +

3 ---- - ??++ + ---- - ?+++ + ---- - -??? +

4 ---- - ++++ + ---- - ++++ + ---? + ?+++ +

5 ---- - +?+? + ---- - ???- + ---- - -?-? +

6 ---- - --?? + ---- - -?++ + ---- - ---- -

7 ---- - ---- - ---- - -++? + ---- - -?-- +

Error % 0 0 29 14 4 14 14 0 4 14 39 14

errors for 4 hr preictal segments are smaller than those for 1 hr segments, for all feature

representations. This observation underscores the significance of “4 hr PH” aspect in

our system, discussed in Section 7.4.1.

Next, we present prediction performance results for several representative datasets,

under three feature encodings. All modeling results follow the same methodology as

presented in Section 7.4.3 for Dog-L4 dataset. That is, for each dataset we estimate

several SVM models, so that the number of experiments equals the number of seizures

in the available data. Tables 7.4 and 7.5 summarize the prediction performance results.

These results show error rates for 4 hr test segments, obtained by combining predictions

for four consecutive 1 hr segments made by the system.

Due to asymmetric nature of the data, we report the FP and FN error rates sepa-

rately, where FP and FN errors correspond to interictal and preictal errors, respectively.

Empirical results in Tables 7.3, 7.4, and 7.5 suggest that no single feature encoding is

consistently superior to others. As expected, results in Table 7.4 indicate high FN error
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Table 7.4. Summary of prediction performances on FP and FN error
rates (%) for 4 hr test segments

Dog
BFB FFT XCORR Combo

FP FN FP FN FP FN FP FN

L2 5 21 10 21 11 42 5 21

L7 9 9 0 27 9 9 0 9

M3 0 33 33 33 0 33 0 33

P2 0 0 0 0 0 25 0 0

L4 0 14 14 0 14 14 0 0

P1 7 17 14 21 7 31 3 10

Table 7.5. Summary of prediction performances on SS (%) and FPR
per day for 4 hr test segments

Dog
BFB FFT XCORR Combo

SS FPR SS FPR SS FPR SS FPR

L2 79 0.32 79 0.63 58 0.63 79 0.32

L7 91 0.55 73 0.00 91 0.55 91 0.00

M3 67 0.00 67 2.00 67 0.00 67 0.00

P2 100 0.00 100 0.00 75 0.00 100 0.00

L4 86 0.00 100 0.86 86 0.86 100 0.00

P1 83 0.41 79 0.83 69 0.41 90 0.21

rate and much lower FP error rate. This is due to scarcity and poor quality of preictal

training data, as noted in Section 7.4.1.

7.6.2. Combining Predictions

Comparing the predictions for 1 hr test segments under three different feature en-

codings in Table 7.3 suggests that some errors can be eliminated if the three predictions

were combined. For example, an 1 hr interictal segment in Experiment 2 of Dog-L4 is

classified as unknown “?” under FFT, but is reliably predicted as interictal under BFB

and XCORR encodings, as shown in Table 7.3. Similarly, the last 1 hr interictal segment

in Experiment 4 is predicted as “unknown” under XCORR, but is classified correctly

under BFB or FFT.
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Therefore, we suggest combining the 1 hr segment predictions under BFB, FFT, and

XCORR encodings before making the decisions for the 4 hr segments. The combining

rule is a simple majority voting (two-out-of-three). The corresponding error rates are

shown in Table 7.4 under the “Combo” column. Using this combining rule, both FP and

FN error rates are reduced relative to error rates achieved by each feature representation.

Equivalently, this combining rule results in improved sensitivity and reduced FPR per

day for all datasets, as shown in Table 7.5. Note that using such rule, system’s predictions

could be better (but never worse) than predictions obtained by each component classifier

(using its own feature encoding).

7.7. Summary

This chapter presents the application of Group Learning for seizure prediction using

iEEG signal (1-D signal). Modeling results presented in this chapter suggest that reliable

seizure prediction from iEEG signal is indeed possible. The proposed SVM-based system

for seizure prediction under Group Learning framework can achieve robust prediction of

preictal and interictal iEEG segments from dogs with epilepsy.

Two important properties of our seizure prediction system are subject-specific model-

ing and using heavily unbalanced training data. The proposed seizure prediction system

(shown in Figures 7.2 and 7.3) has several novel data-analytic interpretations and im-

provements:

(1) During training stage, a binary classifier is estimated from labeled training sam-

ples (20 s windows), as under standard classification setting. Further, we use

unbalanced training dataset, that includes 20 s samples from many interictal

segments, in addition to few available preictal segments. However, we use bal-

anced validation dataset (for model selection), to reflect the clinical requirement

that the goal is to classify each 1 hr test segment (as interictal or preictal).

(2) During testing stage, the goal is to predict a group of 180 unlabeled test samples

(20 s windows), under the assumption that all test samples (in this group)

belong to the same class. This is clearly different from standard inductive
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setting. Further, the system can make three possible predictions for each 1 hr

test segment (e.g., reliable interictal, reliable preictal and unknown).

(3) Additional postprocessing during testing stage is applied to “unknown” predic-

tions which are all regarded as preictals. This postprocessing scheme assumes

that a) the seizure prediction system can predict interictal 1 hr test segments

very reliably, and b) the system can predict preictal test segments either cor-

rectly or as “unreliable.” This reflects clinical knowledge that interictal seg-

ments are inherently much easier to predict (than preictal).
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