160 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)

    Extended Dissipative Filter for Delayed T-S Fuzzy Network of Stochastic System with Packet Loss

    Get PDF
    This research investigates a time-varying delay-based adaptive event-triggered dissipative filtering problem for the interval type-2 (IT-2) Takagi-Sugeno (T-S) fuzzy networked stochastic system. The concept of extended dissipativity is used to solve the ,  and dissipative performances for (IT-2) T-S fuzzy stochastic systems in a unified manner. Data packet failures and latency difficulties are taken into account while designing fuzzy filters. An adaptive event-triggered mechanism is presented to efficiently control network resources and minimise excessive continuous monitoring while assuring the system’s efficiency with extended dissipativity. A new adaptive event triggering scheme is proposed which depends on the dynamic error rather than pre-determined constant threshold. A new fuzzy stochastic Lyapunov-Krasovskii Functional (LKF) using fuzzy matrices with higher order integrals is built based on the Lyapunov stability principle for mode-dependent filters. Solvability of such LKF leads to the formation of appropriate conditions in the form of linear matrix inequalities, ensuring that the resulting error mechanism is stable. In order to highlight the utility and perfection of the proposed technique, an example is presented

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    Dissipative Analysis and Synthesis of Control for TS Fuzzy Markovian Jump Neutral Systems

    Get PDF
    This paper is focused on stochastic stability and strictly dissipative control design for a class of Takagi-Sugeno (TS) fuzzy neutral time delayed control systems with Markovian jumps. The main aim of this paper is to design a strictly dissipative controller such that the closed-loop TS fuzzy control system is stochastically stable, and also the disturbance rejection attenuation is obtained to a given level by means of the H∞ performance index. Intensive analysis is carried out to obtain sufficient conditions for the existence of desired dissipative controller which ensures both the stochastic stability and the strictly dissipative performance. The main advantage of the proposed technique is that it is possible to obtain the dissipative controller with less control effort and also, as special cases, robust H∞ control with the prescribed H∞ performance under given constraints and passivity control can be obtained for the considered systems. Also, the existence condition of the fuzzy dissipative controller can be obtained in terms of linear matrix inequalities. Finally, a practical example based on truck-trailer model is provided to demonstrate the effectiveness and feasibility of the proposed design technique

    Dissipativity analysis for discrete time-delay fuzzy neural networks with Markovian jumps

    Get PDF
    This paper is concerned with the dissipativity analysis and design of discrete Markovian jumping neural networks with sector-bounded nonlinear activation functions and time-varying delays represented by Takagi–Sugeno fuzzy model. The augmented fuzzy neural networks with Markovian jumps are first constructed based on estimator of Luenberger observer type. Then, applying piecewise Lyapunov–Krasovskii functional approach and stochastic analysis technique, a sufficient condition is provided to guarantee that the augmented fuzzy jump neural networks are stochastically dissipative. Moreover, a less conservative criterion is established to solve the dissipative state estimation problem by using matrix decomposition approach. Furthermore, to reduce the computational complexity of the algorithm, a dissipative estimator is designed to ensure stochastic dissipativity of the error fuzzy jump neural networks. As a special case, we have also considered the mixed H∞ and passive analysis of fuzzy jump neural networks. All criteria can be formulated in terms of linear matrix inequalities. Finally, two examples are given to show the effectiveness and potential of the new design techniques.Yingqi Zhang, Peng Shi, Ramesh K. Agarwal, and Yan Sh

    Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays

    Get PDF
    In this study, a multiobjective nonfragile control is proposed for a class of stochastic Takagi and Sugeno (T–S) fuzzy systems with mixed time delays to guarantee the optimal H2 and H∞ performance simultaneously. Firstly, based on the T–S fuzzy model, two form of nonfragile state feedback controllers are designed to stabilize the T–S fuzzy system, that is to say, nonfragile state feedback controllers minimize the H2 and H∞ performance simultaneously. Then, by applying T–S fuzzy approach, the multiobjective H2/H∞ nonfragile fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP by employing LMI-based multiobjective evolution algorithm (MOEA). Finally, the validity of this approach is illustrated by a realistic design example
    • …
    corecore