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Abstract 

The neural network time-varying delay was described as the dynamic properties of a neural cell, 

including neural functional and neural delay differential equations. The differential expression 

explains the derivative term of current and past state. The objective of this paper obtained the neural 

network time-varying delay. A delay-dependent condition is provided to ensure the considered 

discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and 

passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting 

matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel 

sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural 

networks with time-varying delays for improving. We propose sufficient conditions for discrete-time 

neural networks with time-varying delays. An effective LMI approach derives by base the appropriate 

type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time 

stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying 

delays in the form of linear matrix inequality (LMI). 
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1- Introduction 

Current years we have been attending in researching delay neural networks (NNs), this is mainly to the major feasible 

applications in many areas, for example, combinatorial optimization, static image processing, pattern recognition, 

associative memory and signal processing [1]. On the other hand, the time delay is ineluctable in various applied systems, 

and it is also the principal cause of poor performance, oscillation, and instability of the systems. Therefore, important 

interest has been considered to delay-dependent conditions of analysis and combination problems of time-delay NNs 

[2]. Thus, it is significant to learn the stability of discrete-time neural networks (DNNs) with time-varying delay. 

First recommended by Popov [3], the idea of passive systems from the beginning occurs in the conditions of electrical 

circuit theory. In the preliminary 1970s, Willems [4] developed the concept of dissipative systems, and passive systems, 

by suggestion the symbols of a supply rate and a storage function. Dissipativity theory provides a substructure for the 

analysis and design of control systems applying an input-output feature used as a basis energy-related judgment. 

Neural networks (NNs) have been successfully practiced in a diversity of fields such as signal processing, pattern 

recognition, static image processing, associative memory, and combinatorial optimization, and these a applications 

contingent on seriously on their dynamic department. The dynamical conduct of NNs are the key to the above-said 

applications, and a necessary step for the practical design of NNs. Up to now, there have been fruitful research results 

available in the literature about the dynamic deportment of NNs [1-6]. Many results have been investigated by the 

dynamic behaviour of continuous-time NNs [7-10]. However, compared with continuous-time NNs, discrete-time neural 

networks (DNNs) equally have a strong engineering application background for the sake of computer-based simulation 
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and the dynamics of continuous-time NNs cannot be preserved by discretization as mentioned in [11]. Hence, it is 

essential to study the dynamical behaviour of DNNs. 

Moreover, in many physical and biological phenomena, the rate of variation in the system state depends on the past 

states. This characteristic is called a delay (or a time delay) and therefore a system with a time delay is called a time-

delay system. Time delay phenomena were first discovered in biological systems and were later found in many 

engineering systems, such as mechanical transmissions, fluid transmissions, metallurgical processes, and networked 

control systems. They are often a source of instability, periodic oscillatory, chaos, and poor control performance. Time-

delay systems have attracted the attention of many researchers [12-14] because of their importance and widespread 

occurrence. 

It is well known that dissipativeness was initially introduced by "Willems" in terms of an inequality involving the 

storage function and supply rate. Dissipativity hypothesis needs to assume a discriminating some piece in the dissection 

Also control outline for straight Also nonlinear systems, particularly to high-order framework [15], since from those 

useful requisition purpose about the view, a significant number frameworks have to make dissipative for accomplishing 

viable commotion weakening. [16-19]. That provides a strong connection between Physics, system theory, and control 

engineering. The dissipated theory has proven to be an essential and very useful tool for control applications like robotics, 

active vibration damping, electromechanical systems, combustion engines, circuit theory, and for control techniques like 

adaptive control, and inverse optimal control problems. The dissipative theory being a framework for the design and 

analysis of control systems using an input-output description based on energy-related consideration is applicable in 

characterizing important system behaviours, such as passivity, and has close connections with passivity theorem, 

bounded real lemma, Kalman--Yakubovich lemma, and the circle criterion [20-21]. On the other hand, passivity is part 

of a broader and general theory of dissipativeness. The main idea of passivity theory is that the passive properties of a 

system can keep the system internally stable. In recent years, dissipated and passivity results for NNs are established in 

[22-26]. 

Since Zhang et al. [27] has pointed out that the relaxed passivity conditions for NNs with time-varying delays. New 

delay-dependent passive criterion is obtained in terms of linear matrix inequalities, which guarantees that the input and 

output of the considered NNs. Also, Wei et al. [28] shown the passivity problem by using value-map and suitable for 

Lyaponov-Krasovskii function.  Recently, Zeng et al. [29] derived new passivity conditions for NNs with time-varying 

delays and norm-bounded parameter uncertainties using with the complete delay-decomposing approach. Also, the 

problem of robust passivity analysis of uncertain NNs with discrete and distributed time-varying delays has been 

reported, by constructing an augmented Lyapunov functional and combining a new integral inequality with the 

reciprocally convex approaches respectively. In addition, Park M.J. et al. [30] and Li et al. [31] developed generalized 

free-matrix-base integral inequality for enhanced passivity condition and derive in form of linear matrix inequalities 

(LMIs) as complex value.  In [32-34], proposed the global asymptotic stability problem for recurrent NNs with multiple 

time-varying delays. Using the free-weighting matrix technique and incorporating the interconnected information 

between the upper bounds of multiple time-varying delays.  

Recall the past several years. However, there are fewer works have been done on the dynamics of stability, 

dissipativity, and passivity analysis of DNNs with time-varying delays. Motivated by these earlier efforts, in this paper, 

we are concerned with the problem of stability, dissipativity, and passivity analysis of discrete-time neural networks 

with time-varying delays. Based on the newly established integral inequality, a class of new Lyapunov functional 

including is proposed, and some less conservative delay range-dependent stability, dissipativity and passivity criteria are 

derived in terms of LMIs. 

This paper is organized as follows. Preliminaries is formulates the problem under consideration. Stability, 

Dissipativity, and passivity conditions for stability, dissipativity, and passivity analysis of DNNs with time-varying 

delays are derived in main results. Finally, conclusions are drawn in last section. 

1-1- Preliminaries 

The The following notation will be used in this paper. 𝑅+ denotes the set of all real non-negative numbers; ℝ𝑛 

denotes the 𝑛 −dimensional space with the scalar product 𝑥, 𝑦 or 𝑥𝑇𝑦 of two vectors 𝑥, 𝑦, and the vector norm ∥. ∥; 
𝑀𝑛×𝑟 denotes the space of all matrices of (𝑛 × 𝑟) −dimensions. 𝐴𝑇 denotes the transpose of matrix 𝐴; 𝐴 is symmetric 

if 𝐴 = 𝐴𝑇; 𝐼 denotes the identity matrix; Matrix 𝐴 is called semi-positive definite (𝐴 ≥ 0) if 〈𝐴𝑥, 𝑥〉 ≥ 0, for all 𝑥 ∈
ℝ𝑛; 𝐴 is positive definite (𝐴 > 0) if 〈𝐴𝑥, 𝑥〉 > 0 for all 𝑥 = 0; 𝐴 > 𝐵 means 𝐴 − 𝐵 > 0. The notation diag{… } stands 

for a block-diagonal matrix. The symmetric term in a matrix is denoted by ∗ First point. 

Lemma 1.1 ([38]) For a positive definite matrix 𝑅 > 0 and any sequence of discrete-time variables 𝑦: [−ℎ, 0] ∩ 𝑍 →
𝑅𝑛, the following inequality holds:  

 ∑0𝑖=−ℎ+1 Δ𝑥(𝑖)
𝑇𝑅Δ𝑥(𝑖) ≥

1

ℎ
Θ0
𝑇𝑅Θ0 +

3

ℎ

ℎ+1

ℎ−1
Ω1
𝑇𝑅Ω1 +

5(ℎ+1)(ℎ+2)

(ℎ−2)(ℎ−1)
Ω2
𝑇𝑅Ω2, 
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 where Θ0 = 𝑥(0) − 𝑥(−ℎ), Ω1 = 𝑥(0) + 𝑥(−ℎ) −
2

ℎ+1
∑0𝑘=−ℎ 𝑥(𝑘), Ω2 = 𝑥(0) − 𝑥(−ℎ) +

6ℎ

(ℎ+1)(ℎ+2)
∑0𝑖=−ℎ 𝑥(𝑖) −

12

(ℎ+1)(ℎ+2)
∑0𝑖=−ℎ+1 ∑

0
𝑘=𝑖 𝑥(𝑘).  

Lemma 1.2 ([38]) For a positive definite matrix 𝑅 > 0 and any sequence of discrete-time variables 𝑦: [−ℎ, 0] ∩ 𝑍 →
𝑅𝑛, the following inequality holds:  

∑

0

𝑖=−ℎ+1

∑

0

𝑘=𝑖

Δ𝑥(𝑘)𝑇𝑅Δ𝑥(𝑘) ≥
2(ℎ + 1)

ℎ
[𝑥(0) −

1

(ℎ + 1)
∑

0

𝑖=−ℎ

𝑥(𝑖)]

𝑇

𝑅 [𝑥(0) −
1

(ℎ + 1)
∑

0

𝑖=−ℎ

𝑥(𝑖)] 

 +
4(ℎ+1)(ℎ+2)

ℎ(ℎ−1)
Ω4
𝑇𝑅Ω4, 

Where Ω4 = [𝑥(0) +
2

(ℎ+1)
∑0𝑖=−ℎ 𝑥(𝑖) −

6

(ℎ+1)(ℎ+2)
∑0𝑖=−ℎ ∑

0
𝑘=𝑖 𝑥(𝑘)].  

 

Definition 1.3   ([37]) The neural network (1) is said to be (𝑄, 𝑆, 𝑅) −dissipative, if the following dissipation inequality  

 ∑
𝑘𝑝
𝑘0
𝑟(𝑢(𝑘), 𝑦(𝑘)) ≥ 0,    ∀𝑘𝑝 ≥ 0, 

Holds under zero initial condition for any nonzero input 𝑢 ∈ 𝑙2[0, +∞). Furthermore, if for some scalar ?𝛾 > 0, the 

dissipation inequality  

 ∑
𝑘𝑝
𝑘0
𝑟(𝑢(𝑘), 𝑦(𝑘)) ≥ 𝛾 ∑

𝑘𝑝
𝑘0
𝑢𝑇(𝑘)𝑢(𝑘),    ∀𝑘𝑝 ≥ 0, 

Holds under zero initial condition for any nonzero input 𝑢 ∈ 𝑙2[0, +∞), then the neural network (1) is said to be strictly 

(𝑄, 𝑆, 𝑅) − 𝛾 −dissipative. In this paper, we define a quadratic supply rate 𝑟(𝑢, 𝑦) associated with neural network (1) 

as follows:  

 𝑟(𝑢, 𝑦) = 𝑦𝑇𝑄𝑦 + 2𝑦𝑇𝑆𝑢 + 𝑢𝑇𝑅𝑢, 

Where 𝑄 ≤ 0, 𝑆, and 𝑅 are real symmetric matrices of appropriate dimensions.  

2- Results and Discussion 

In this section, we will establish a new criterion on dissipativity analysis of DNNs with time-varying delays; 

𝑥(𝑘 + 1) = 𝐶𝑥(𝑘) + 𝐷0𝑓(𝑥(𝑘)) + 𝐷1𝑔(𝑥(𝑘 − ℎ(𝑘)) + 𝑢(𝑘),    𝑘 ≥ 0, 

𝑦(𝑘) = 𝑓(𝑥(𝑘)), 

𝑥(𝑘) = 𝜑(𝑘), 𝑘 ∈ [−ℎ2, 0]. 

(1) 

Where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘)]
𝑇 ∈ 𝑅𝑛 is the state of the neural, 𝑢(𝑘) ∈ 𝑅𝑛 is the input belonging to 𝑙2, 𝜑 is 

the initial value, 𝑛 is the number of neurals, 

 𝑓(𝑥(𝑘)) = [𝑓1(𝑥1(𝑘)), 𝑓2(𝑥2(𝑘)), … , 𝑓𝑛(𝑥𝑛(𝑘))]
𝑇 ,    𝑔(𝑥(𝑘 − ℎ(𝑘)) = [𝑔1(𝑥1(𝑘 − ℎ(𝑘)), 

𝑔2(𝑥2(𝑘 − ℎ(𝑘)), … , 𝑔𝑛(𝑥𝑛(𝑘 − ℎ(𝑘))]
𝑇 , are the activation functions;  

𝐶 = diag(𝑐1, 𝑐2, … , 𝑐𝑛), 𝑎𝑖 > 0 represents the self-feedback term, 𝐷0, 𝐷1 denote the connection weights, the discretely 

delayed connection weights and the distributively delayed connection weight. For every 𝑘 ≥ 0, the variable delay ℎ(𝑘) 
is defined to be a positive integer and ℎ(𝑘) ∈ [ℎ1, ℎ2], ∀𝑘 ≥ 0 for some integers ℎ2 ≥ ℎ1 > 1.  

Assumption 2.1   ([35]) For any 𝑠1, 𝑠2 ∈ 𝑅, 𝑠1 ≠ 𝑠2, the continuous and bounded activation functions; 

𝑓𝑖(⋅) and �̂�𝑖(⋅) satisfy  

 𝐹𝑖
− ≤

�̂�𝑖(𝑠1)−�̂�𝑖(𝑠2)

𝑠1−𝑠2
≤ 𝐹𝑖

+, 

 𝐺𝑖
− ≤

�̂�𝑖(𝑠1)−�̂�𝑖(𝑠2)

𝑠1−𝑠2
≤ 𝐺𝑖

+,    𝑖 = 1,2, … , 𝑛,  where 𝐹𝑖
−, 𝐹𝑖

+, 𝐺𝑖
−, and 𝐺𝑖

+ are known constants. 

The following notations are needed; 

 ℎ12 = ℎ2 − ℎ1, 𝑒𝑖 = [0,0… , 𝐼⏞
𝑖

, … 0⏟        
10

]

10𝑛×𝑛

𝑇

, 𝑖 = 1,2, … ,10, 𝑦(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1),  

𝜉(𝑘) = [𝑥𝑇(𝑘), 𝑥𝑇(𝑘 − ℎ1), 𝑥
𝑇(𝑘 − ℎ(𝑘)), 𝑥𝑇(𝑘 − ℎ2), 𝑓(𝑥(𝑘)), 𝑔(𝑥(𝑘 − ℎ(𝑘)),

1

ℎ1 + 1
∑

𝑘

𝑖=𝑘−ℎ1

𝑥𝑇(𝑖), 
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1

ℎ(𝑘)−ℎ1+1
∑𝑘−ℎ1
𝑖=𝑘−ℎ(𝑘) 𝑥

𝑇(𝑖),
1

ℎ2−ℎ(𝑘)+1
∑𝑘−ℎ(𝑘)
𝑖=𝑘−ℎ2

𝑥𝑇(𝑖), ∑0𝑖=−ℎ1+1 ∑
𝑘
𝑗=𝑘+𝑖 𝑥

𝑇(𝑗), 𝑢𝑇(𝑘)]𝑇 , 

 𝛼(𝑘) = [𝑥𝑇(𝑘), ∑𝑘−1𝑖=𝑘−ℎ1
𝑥𝑇(𝑖), ∑

𝑘−ℎ1−1
𝑖=𝑘−ℎ2

𝑥𝑇(𝑖), ∑0𝑖=−ℎ1+1 ∑
𝑘
𝑗=𝑘+𝑖 𝑥

𝑇(𝑗)]
𝑇
, 

𝑍10 = 𝑑𝑖𝑎𝑔 {𝑍1,
3(ℎ1 + 1)

ℎ1 − 1
𝑍1,
5(ℎ1 + 1)(ℎ1 + 2)

(ℎ1 − 2)(ℎ1 − 1)
𝑍1} , 𝑍2

∗ = [
𝑍2 0
0 3𝑍2

] , 𝑍20 = [
𝑍2
∗ 𝑋

𝑍2
∗], 

  Π0 = [𝐶, 0,0,0, 𝐷0, 𝐷1, 0,0,0, 𝐼]
𝑇 , 

Π1 = [Π0, (ℎ1 + 1)𝑒7 − 𝑒2, (ℎ(𝑘) − ℎ1 + 1)𝑒8 + (ℎ2 − ℎ(𝑘) + 1)𝑒9 − 𝑒3 − 𝑒4, 𝑒10 + ℎ1Π0 − (ℎ1 + 1)𝑒7 + 𝑒2], 

     Π2 = [𝑒1, (ℎ1 + 1)𝑒7 − 𝑒1, (ℎ(𝑘) − ℎ1 + 1)𝑒8 + (ℎ2 − ℎ(𝑘) + 1)𝑒9 − 𝑒3 − 𝑒2, 𝑒10], 

Π3 = [𝐶 − 𝐼, 0,0,0, 𝐷0, 𝐷1, 0,0,0, 𝐼]
𝑇 , Π4 = [𝑒1 − 𝑒2, 𝑒1 + 𝑒2 − 2𝑒7, 𝑒1 − 𝑒2 +

6ℎ1
ℎ1 + 2

𝑒7 −
12

(ℎ1 + 1)(ℎ1 + 2)
𝑒10)], 

 Π5 = [𝑒3 − 𝑒4, 𝑒3 + 𝑒4 − 2𝑒9, 𝑒2 − 𝑒3, 𝑒2 + 𝑒3 − 2𝑒8], Π6 = 𝑒1 − 𝑒7, 

 Π7 = 𝑒1 + (2 −
6

(ℎ1+2)
) 𝑒7 −

6

(ℎ1+1)(ℎ1+2)
𝑒10, Ξ1 = Π1𝑃Π1

𝑇 − Π2𝑃Π2
𝑇 , 

Ξ2 = 𝑒1𝑄1𝑒1
𝑇 − 𝑒2𝑄1𝑒2

𝑇 + 𝑒2𝑄2𝑒2
𝑇 − 𝑒4𝑄2𝑒4

𝑇 , Ξ3 = Π3(ℎ1
2𝑍1 + ℎ12

2 𝑍2)Π3
𝑇 − Π4𝑍10Π4

𝑇 − Π5𝑍20Π5
𝑇 , 

Ξ4 =
ℎ1(ℎ1 + 1)

2
Π3𝑍3Π3

𝑇 −
2(ℎ1 + 1)

ℎ1
Π6𝑍3Π6

𝑇 −
4(ℎ1

2 − 1)

ℎ1(ℎ1 + 2)
Π7𝑍3Π7

𝑇 , Ξ5 = −𝑒1𝐹1Λ1𝑒1
𝑇 + 2𝑒1𝐹2Λ1𝑒5

𝑇 − 𝑒5Λ1𝑒5
𝑇 , 

Ξ6 = −𝑒3𝐺1Λ2𝑒3
𝑇 + 2𝑒3𝐺2Λ2𝑒6

𝑇 − 𝑒6Λ2𝑒6
𝑇 , Ξ7 = −𝑒5Ψ1𝑒5

𝑇 − 2𝑒5Ψ2𝑒10
𝑇 − 𝑒10Ψ3𝑒10

𝑇 , Ξ = ∑

7

𝑖=1

Ξ𝑖 . 

Theorem 2.2  For given integer ℎ1, ℎ2 satisfying 1 < ℎ1 ≤ ℎ2, matrices Ψ1, Ψ2, and Ψ3 with Ψ1, Ψ2, and Ψ3 being real 

symmetric, system (1) is stability, passivity, and dissipativity for ℎ1 < ℎ(𝑘) ≤ ℎ2, if there are positive define matrices 

𝑃 ∈ 𝑅4𝑛×4𝑛, 𝑍1 ∈ 𝑅
𝑛×𝑛 , 𝑍2 ∈ 𝑅

𝑛×𝑛 , 𝑍3 ∈ 𝑅
𝑛×𝑛, 𝑄1 ∈ 𝑅

𝑛×𝑛, 𝑄2 ∈ 𝑅
𝑛×𝑛, and any matrix 𝑋 ∈ 𝑅2𝑛×2𝑛, diagonal matrices 

Λ1 > 0, Λ2 > 0 of appropriate dimensions such that the following three LMIs are satisfied.  

Ξ < 0,        𝑍20 ≥ 0.  (2) 

Proof. Choose a Lyapunov functional candidate as follows:  

𝑉(𝑘) = ∑4𝑗=1 𝑉𝑗(𝑘), (3) 

Where                   𝑉1(𝑘) = 𝛼
𝑇(𝑘)𝑃𝛼(𝑘), 

𝑉2(𝑘) = ∑
𝑘−1
𝑖=𝑘−ℎ1

𝑥𝑇(𝑖)𝑄1𝑥(𝑖) + ∑
𝑘−ℎ1−1
𝑖=𝑘−ℎ2

𝑥𝑇(𝑖)𝑄2𝑥(𝑖),        

𝑉3(𝑘) = ℎ1 ∑
0
𝑖=−ℎ1+1

∑𝑘𝑗=𝑘+𝑖 𝑦
𝑇(𝑖)𝑍1𝑦(𝑖) + ℎ12∑

−ℎ1
𝑖=−ℎ2+1

∑𝑘𝑗=𝑘+𝑖 𝑦
𝑇(𝑖)𝑍2𝑦(𝑖), (4) 

𝑉4(𝑘) = ∑
0
𝑖=−ℎ1+1

∑0𝑗=𝑖 ∑
𝑘
𝑢=𝑘+𝑗 𝑦

𝑇(𝑢)𝑍3𝑦(𝑢).    

 

Next, we calculate the difference of 𝑉(𝑘). For 𝑉1(𝑘) and 𝑉2(𝑘), we have: 

Δ𝑉1(𝑘) = 𝜉
𝑇(𝑘)Ξ1𝜉(𝑘) (5) 

and  

Δ𝑉2(𝑘) = 𝜉
𝑇(𝑘)Ξ2𝜉(𝑘). (6) 

Calculating 𝑉3(𝑘) gives; 

Δ𝑉3(𝑘) = ℎ1
2𝑦𝑘+1

𝑇 𝑍1𝑦𝑘+1 + ℎ12
2 𝑦𝑘+1

𝑇 𝑍2𝑦𝑘+1 − ℎ1 ∑
𝑘
𝑖=𝑘−ℎ1+1

𝑦𝑇(𝑖)𝑍1𝑦(𝑖) − ℎ12 − ℎ12∑
𝑘−ℎ1
𝑖=𝑘−ℎ2+1

𝑦𝑇(𝑖)𝑍2𝑦(𝑖). (7) 

By Lemma1.1, we get; 

−ℎ1 ∑
𝑘
𝑖=𝑘−ℎ1+1

𝑦𝑇(𝑖)𝑍1𝑦(𝑖) = −𝜉
𝑇(𝑘)Π4𝑍10Π4

𝑇𝜉(𝑘). (8) 

Under the condition of 𝑍20 > 0, by Lemma2.1 and the lower bounded lemma, we get; 

−ℎ12∑
𝑘
𝑖=𝑘−ℎ2+1

𝑦𝑇(𝑖)𝑍2𝑦(𝑖) = −𝜉
𝑇(𝑘)Π5𝑍20Π5

𝑇𝜉(𝑘). (9) 
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Then we have; 

Δ𝑉3(𝑘) = 𝜉
𝑇(𝑘)Ξ3𝜉(𝑘). (10) 

Calculating Δ𝑉4(𝑘) gives; 

Δ𝑉4(𝑘) =
ℎ1(ℎ1+1)

2
𝑦𝑘+1
𝑇 𝑍3𝑦𝑘+1 − ∑

0
𝑖=ℎ1+1

∑𝑘𝑖=𝑘+𝑖 𝑦
𝑇(𝑗)𝑍3𝑦(𝑗). (11) 

 By Lemma1.2, we have; 

−∑0𝑖=ℎ1+1 ∑
𝑘
𝑖=𝑘+𝑖 𝑦

𝑇(𝑗)𝑍3𝑦(𝑗) ≤ 𝜉
𝑇(𝑘) (−

2(ℎ1+1)

ℎ1
Π6𝑍3Π6

𝑇 −
4(ℎ1+1)(ℎ2+2)

ℎ1(ℎ1+1)
Π7𝑍3Π7

𝑇) 𝜉(𝑘). (12) 

 Then we have; 

Δ𝑉4(𝑘) = 𝜉
𝑇(𝑘)Ξ4𝜉(𝑘). (13) 

 From Assumption 2.1, we have; 

[
𝑥(𝑘)

𝑓(𝑥(𝑘))
]
𝑇

[
𝐹1Λ1 −𝐹2Λ1
−𝐹2Λ1 Λ1

]
𝑇

[
𝑥(𝑘)

𝑓(𝑥(𝑘))
] ≤ 0, (14) 

  

[
𝑥(𝑘 − ℎ(𝑘))

𝑔(𝑥(𝑘 − ℎ(𝑘)))
]
𝑇

[
𝐺1Λ1 −𝐺2Λ1
−𝐺2Λ1 Λ1

]
𝑇

[
𝑥(𝑘 − ℎ(𝑘))

𝑔(𝑥(𝑘 − ℎ(𝑘)))
] ≤ 0, (15) 

Where  

 Λ1 = 𝑑𝑖𝑎𝑔{𝜆11, 𝜆12, … , 𝜆1𝑛}, Λ2 = 𝑑𝑖𝑎𝑔{𝜆21, 𝜆22, … , 𝜆2𝑛}, 

 𝐹1 = 𝑑𝑖𝑎𝑔{𝐹1
−𝐹1

+, 𝐹2
−𝐹2

+, … , 𝐹𝑛
−𝐹𝑛

+},2= 𝑑𝑖𝑎𝑔{
𝐹1
−+𝐹1

+

2
,
𝐹2
−+𝐹2

+

2
, … ,

𝐹𝑛
−+𝐹𝑛

+

2
}, 

 𝐺1 = 𝑑𝑖𝑎𝑔{𝐺1
−𝐺1

+, 𝐺2
−𝐺2

+, … , 𝐺𝑛
−𝐺𝑛

+},2= 𝑑𝑖𝑎𝑔{
𝐺1
−+𝐺1

+

2
,
𝐺2
−+𝐺2

+

2
, … ,

𝐺𝑛
−+𝐺𝑛

+

2
}. 

Since Δ𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 , by introducing relaxation matrices 𝑊1,𝑊2  with appropriate dimensions, we obtain the 

following zero equation; 

2(Δ𝑇(𝑘)𝑍1
𝑇 + 𝑥𝑇(𝑘)𝑍2

𝑇)[𝐶𝑥(𝑘) + 𝐷0𝑓(𝑥(𝑘)) + 𝐷1𝑔(𝑥(𝑘 − ℎ(𝑘)) + 𝑢(𝑘) − 𝑥(𝑘) − Δ
𝑇(𝑘)] = 0. (16) 

Define  

𝐽(𝑖) = 𝑦𝑇(𝑖)Ψ1𝑦(𝑖) + 2𝑦
𝑇(𝑖)Ψ2𝑢(𝑖) + 𝑢

𝑇(𝑖)Ψ3𝑢(𝑖). (17) 

Adding the equations from (5) to (17), then we can get the upper bound of Δ𝑉(𝑘) − 𝐽(𝑘) as  

Δ𝑉(𝑘) − 𝐽(𝑘) ≤ 𝜉𝑇(𝑘) ∑7𝑖=1 Ξ𝑖𝜉(𝑘) = 𝜉
𝑇(𝑘)Ξ𝜉(𝑘). (18) 

If Ξ < 0, then Δ𝑉(𝑘) − 𝐽(𝑘) < 0. 

This completes the proof of Theorem2.2.  

Remark 2.3 In the above Theorem, we analyzed the passivity and dissipavity for DNN (1). In the following corollary 

analyze the asymptotic stability for NN: 

𝑥(𝑘 + 1) = 𝐶𝑥(𝑘) + 𝐷0𝑓(𝑥(𝑘)) + 𝐷1𝑔(𝑥(𝑘 − ℎ(𝑘)),    𝑘 ≥ 0, (19) 

𝑥(𝑘) = 𝜑(𝑘), 𝑘 ∈ [−ℎ2, 0]. 

The NN (19) is a special case of (1) when 𝑢(𝑘) = 𝑦(𝑘) = 0.  

The following notations are needed.  

 ℎ12 = ℎ2 − ℎ1, 𝑒𝑖 = [0,0… , 𝐼⏞
𝑖

, … 0⏟        
9

]

9𝑛×𝑛

𝑇

, 𝑖 = 1,2, … ,9, 𝑦(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1), 

𝜉(𝑘) = [𝑥𝑇(𝑘), 𝑥𝑇(𝑘 − ℎ1), 𝑥
𝑇(𝑘 − ℎ(𝑘)), 𝑥𝑇(𝑘 − ℎ2), 𝑓(𝑥(𝑘)), 𝑔(𝑥(𝑘 − ℎ(𝑘)),

1

ℎ1 + 1
∑

𝑘

𝑖=𝑘−ℎ1

𝑥𝑇(𝑖), 

             
1

ℎ(𝑘)−ℎ1+1
∑𝑘−ℎ1𝑖=𝑘−ℎ(𝑘) 𝑥

𝑇(𝑖),
1

ℎ2−ℎ(𝑘)+1
∑𝑘−ℎ(𝑘)𝑖=𝑘−ℎ2

𝑥𝑇(𝑖), ∑0𝑖=−ℎ1+1 ∑
𝑘
𝑗=𝑘+𝑖 𝑥

𝑇(𝑗)]𝑇 , 

 𝛼(𝑘) = [𝑥𝑇(𝑘), ∑𝑘−1𝑖=𝑘−ℎ1
𝑥𝑇(𝑖), ∑

𝑘−ℎ1−1
𝑖=𝑘−ℎ2

𝑥𝑇(𝑖), ∑0𝑖=−ℎ1+1 ∑
𝑘
𝑗=𝑘+𝑖 𝑥

𝑇(𝑗)]
𝑇
, 
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 𝑍10 = 𝑑𝑖𝑎𝑔 {𝑍1,
3(ℎ1+1)

ℎ1−1
𝑍1,

5(ℎ1+1)(ℎ1+2)

(ℎ1−2)(ℎ1−1)
𝑍1} , 𝑍2

∗ = [
𝑍2 0
0 3𝑍2

] , 𝑍20 = [
𝑍2
∗ 𝑋

𝑍2
∗], 

 Π0 = [𝐶, 0,0,0, 𝐷0, 𝐷1, 0,0,0]
𝑇 , 

 Π1 = [Π0, (ℎ1 + 1)𝑒7 − 𝑒2, (ℎ(𝑘) − ℎ1 + 1)𝑒8 + (ℎ2 − ℎ(𝑘) + 1)𝑒9 − 𝑒3 − 𝑒4, 𝑒10 + ℎ1Π0 −
(ℎ1 + 1)𝑒7 + 𝑒2], 

 Π2 = [𝑒1, (ℎ1 + 1)𝑒7 − 𝑒1, (ℎ(𝑘) − ℎ1 + 1)𝑒8 + (ℎ2 − ℎ(𝑘) + 1)𝑒9 − 𝑒3 − 𝑒2, 𝑒10], 

 Π3 = [𝐶 − 𝐼, 0,0,0, 𝐷0, 𝐷1, 0,0,0]
𝑇 , Π4 = [𝑒1 − 𝑒2, 𝑒1 + 𝑒2 − 2𝑒7, 𝑒1 − 𝑒2 +

6ℎ1

ℎ1+2
𝑒7 −

12

(ℎ1+1)(ℎ1+2)
𝑒10)], 

 Π5 = [𝑒3 − 𝑒4, 𝑒3 + 𝑒4 − 2𝑒9, 𝑒2 − 𝑒3, 𝑒2 + 𝑒3 − 2𝑒8], Π6 = 𝑒1 − 𝑒7, 

 Π7 = 𝑒1 + (2 −
6

(ℎ1+2)
) 𝑒7 −

6

(ℎ1+1)(ℎ1+2)
𝑒10, Ξ1 = Π1𝑃Π1

𝑇 − Π2𝑃Π2
𝑇 , 

 Ξ2 = 𝑒1𝑄1𝑒1
𝑇 − 𝑒2𝑄1𝑒2

𝑇 + 𝑒2𝑄2𝑒2
𝑇 − 𝑒4𝑄2𝑒4

𝑇 , Ξ3 = Π3(ℎ1
2𝑍1 + ℎ12

2 𝑍2)Π3
𝑇 − Π4𝑍10Π4

𝑇 − Π5𝑍20Π5
𝑇 , 

 Ξ4 =
ℎ1(ℎ1+1)

2
Π3𝑍3Π3

𝑇 −
2(ℎ1+1)

ℎ1
Π6𝑍3Π6

𝑇 −
4(ℎ1

2−1)

ℎ1(ℎ1+2)
Π7𝑍3Π7

𝑇 , Ξ5 = −𝑒1𝐹1Λ1𝑒1
𝑇 + 2𝑒1𝐹2Λ1𝑒5

𝑇 −

𝑒5Λ1𝑒5
𝑇 , 

 Ξ6 = −𝑒3𝐺1Λ2𝑒3
𝑇 + 2𝑒3𝐺2Λ2𝑒6

𝑇 − 𝑒6Λ2𝑒6
𝑇 , Θ = ∑6𝑖=1 Ξ𝑖 . 

  

Corollary 2.4  For given integer ℎ1, ℎ2 satisfying 0 < ℎ1 < ℎ2 system (19) is asymptotically stable for ℎ1 < ℎ(𝑘) ≤
ℎ2, if there are positive define matrices 𝑃 ∈ 𝑅4𝑛×4𝑛, 𝑍1 ∈ 𝑅

𝑛×𝑛, 𝑍2 ∈ 𝑅
𝑛×𝑛, 𝑍3 ∈ 𝑅

𝑛×𝑛, 𝑄1 ∈ 𝑅
𝑛×𝑛 , 𝑄2 ∈ 𝑅

𝑛×𝑛, and any 

matrix 𝑋 ∈ 𝑅2𝑛×2𝑛, diagonal matrices Λ1 > 0, Λ2 > 0 of appropriate dimensions such that the following three LMIs are 

satisfied.  

Θ < 0,        𝑍20 ≥ 0. (20) 

Summing up the above analysis, some sufficient conditions on finite-time stability for dissipativity and passivity 

analysis of discrete-time neural networks with time-varying delays (1) with (2), (3) are obtained. In the following, we 

mainly focus on stabilizing by transforming the sufficient conditions into solvable linear matrix inequalities. 

3- Conclusion 

In this paper, stability, dissipativity and passivity analysis of discrete-time neural networks with time-varying delays 

was studied. A delay-dependent condition has been provided to ensure the considered discrete-time neural networks 

with time-varying delays to be stability, dissipativity and passivity. An effective LMI approach has been proposed to 

derive the stability, dissipativity and passivity criterion. Based on the appropriate type of Lyapunov functional, a 

sufficient condition for the solvability of this problem is established for the stability, dissipativity and passivity criterion. 
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