99,966 research outputs found

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Neighborhood gossip: Concurrent averaging through local interference

    Get PDF
    In this paper, we study a gossip algorithm for distributed averaging over a wireless sensor network. The usual assumption is that, through properly chosen codes, the physical layer is reduced to a set of reliable bit pipes for the distributed averaging algorithm. However, with a new channel coding technique, computation coding, we can exploit the interference property of the wireless medium for efficient averaging. This then provides a new abstraction for the physical layer: reliable linear equations instead of reliable bit pipes. The “neighborhood gossip” algorithm operates modularly on top of this abstraction. We will show that for certain regimes, such an approach can lead to energy savings that are exponential in the network size and time savings that are polynomial

    Isn't Hybrid ARQ Sufficient?

    Full text link
    In practical systems, reliable communication is often accomplished by coding at different network layers. We question the necessity of this approach and examine when it can be beneficial. Through conceptually simple probabilistic models (based on coin tossing), we argue that multicast scenarios and protocol restrictions may make concatenated multi-layer coding preferable to physical layer coding alone, which is mostly not the case in point-to-point communications.Comment: Paper presented at Allerton Conference 201

    Transport capacity of wireless networks: benefits from multi-access computation coding

    Get PDF
    We consider the effect on the transport capacity of wireless networks of different physical layer coding mechanisms. We compare the performance of traditional channel coding techniques, turning the wireless network in reliable point-to-point channels, with multi-access computation coding, in which nodes receive functions of messages transmitted by different neighbours. In both cases, network coding is used on higher layers. For one-dimensional networks, the benefit in transport capacity of computation-coding over point-to-point channels is a factor of 2; for two-dimensional networks, we show it to be at least 2.5

    Joint Compute and Forward for the Two Way Relay Channel with Spatially Coupled LDPC Codes

    Full text link
    We consider the design and analysis of coding schemes for the binary input two way relay channel with erasure noise. We are particularly interested in reliable physical layer network coding in which the relay performs perfect error correction prior to forwarding messages. The best known achievable rates for this problem can be achieved through either decode and forward or compute and forward relaying. We consider a decoding paradigm called joint compute and forward which we numerically show can achieve the best of these rates with a single encoder and decoder. This is accomplished by deriving the exact performance of a message passing decoder based on joint compute and forward for spatially coupled LDPC ensembles.Comment: This paper was submitted to IEEE Global Communications Conference 201

    Relay selection for efficient HARQ-IR protocols in relay-assisted multisource multicast networks

    Get PDF
    This paper investigates relay selection for reliable data transmission in relay-assisted multisource multicast networks (RMMNs) where multiple source nodes distribute information to a set of destination nodes with the assistance of multiple relay nodes. Hybrid automatic repeat request with incremental redundancy (HARQ-IR) is used and supported by either a physical-layer network coding (PNC) or an analog network coding (ANC) technique employed at the relays. By deriving efficiency metrics of the HARQ-IR protocols, we propose relay selection schemes for RMMNs to minimize the transmission delay and energy consumption. Simulation results are provided to analyse each relay selection scheme

    Relay selection for efficient HARQ-IR protocols in relay-assisted multisource multicast networks

    Get PDF
    This paper investigates relay selection for reliable data transmission in relay-assisted multisource multicast networks (RMMNs) where multiple source nodes distribute information to a set of destination nodes with the assistance of multiple relay nodes. Hybrid automatic repeat request with incremental redundancy (HARQ-IR) is used and supported by either a physical-layer network coding (PNC) or an analog network coding (ANC) technique employed at the relays. By deriving efficiency metrics of the HARQ-IR protocols, we propose relay selection schemes for RMMNs to minimize the transmission delay and energy consumption. Simulation results are provided to analyse each relay selection scheme
    • …
    corecore