1,145 research outputs found

    Further Results on Coding for Reliable Communication over Packet Networks

    Get PDF
    In "On Coding for Reliable Communication over Packet Networks" (Lun, Medard, and Effros, Proc. 42nd Annu. Allerton Conf. Communication, Control, and Computing, 2004), a capacity-achieving coding scheme for unicast or multicast over lossy wireline or wireless packet networks is presented. We extend that paper's results in two ways: First, we extend the network model to allow packets received on a link to arrive according to any process with an average rate, as opposed to the assumption of Poisson traffic with i.i.d. losses that was previously made. Second, in the case of Poisson traffic with i.i.d. losses, we derive error exponents that quantify the rate at which the probability of error decays with coding delay.Comment: 5 pages; to appear in Proc. 2005 IEEE International Symposium on Information Theory (ISIT 2005

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi

    An Efficient Network Coding based Retransmission Algorithm for Wireless Multicasts

    Full text link
    Retransmission based on packet acknowledgement (ACK/NAK) is a fundamental error control technique employed in IEEE 802.11-2007 unicast network. However the 802.11-2007 standard falls short of proposing a reliable MAC-level recovery protocol for multicast frames. In this paper we propose a latency and bandwidth efficient coding algorithm based on the principles of network coding for retransmitting lost packets in a singlehop wireless multicast network and demonstrate its effectiveness over previously proposed network coding based retransmission algorithms.Comment: 5 pages, 5 figure

    Multicast in wireless erasure networks with feedback

    Get PDF
    This paper studies the lossy, wireless packet network of [1], in the case of a multicast requirement and the availability of feedback. In the unicast case, feedback is sufficient to allow a strategy which achieves the throughput-optimal cut-set capacity without requiring network coding [3]. We provide a counter-example to show that source coding and feedback, without network coding, is insufficient to achieve the cut-set capacity for the multicast wireless erasure network. In particular, we examine a network with one source, one relay, and two destinations. We show that even with the highly optimistic assumption of feedback which provides global packet state awareness, this network still fails to reach capacity. This bridges the gap between two previously known results; one, that network coding can achieve the capacity of the wireless erasure network, and two, that feedback allows a capacity achieving scheme which does not require network coding in the unicast wireless erasure network

    Network Coding Meets TCP: Theory and Implementation

    Get PDF
    The theory of network coding promises significant benefits in network performance, especially in lossy networks and in multicast and multipath scenarios. To realize these benefits in practice, we need to understand how coding across packets interacts with the acknowledgment (ACK)-based flow control mechanism that forms a central part of today's Internet protocols such as transmission control protocol (TCP). Current approaches such as rateless codes and batch-based coding are not compatible with TCP's retransmission and sliding-window mechanisms. In this paper, we propose a new mechanism called TCP/NC that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs-the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Thus, our new TCP ACK rule takes into account the network coding operations in the lower layer and enables a TCP-compatible sliding-window approach to network coding. Coding essentially masks losses from the congestion control algorithm and allows TCP/NC to react smoothly to losses, resulting in a novel and effective approach for congestion control over lossy networks such as wireless networks. An important feature of our solution is that it allows intermediate nodes to perform re-encoding of packets, which is known to provide significant throughput gains in lossy networks and multicast scenarios. Simulations show that our scheme, with or without re-encoding inside the network, achieves much higher throughput compared to TCP over lossy wireless links. We present a real-world implementation of this protocol that addresses the practical aspects of incorporating network coding and decoding with TCP's wind ow management mechanism. We work with TCP-Reno, which is a widespread and practical variant of TCP. Our implementation significantly advances the goal of designing a deployable, general, TCP-compatible protocol that provides the benefits of network coding.National Science Foundation (U.S.) (Grant CNS-0627021)National Science Foundation (U.S.) (Grant CNS-0721491)National Science Foundation (U.S.) (Grant CCF-0915922)United States. Defense Advanced Research Projects Agency (Subcontract 18870740-37362-C)United States. Defense Advanced Research Projects Agency (Subcontract 060786)United States. Defense Advanced Research Projects Agency (Subcontract 069145)United States. Defense Advanced Research Projects Agency (Contract N66001-06-C-2020)Space and Naval Warfare Systems Center San Diego (U.S.) (Contract N66001- 08-C-2013

    Design and Reliability Performance Evaluation of Network Coding Schemes for Lossy Wireless Networks

    Get PDF
    This thesis investigates lossy wireless networks, which are wireless communication networks consisting of lossy wireless links, where the packet transmission via a lossy wireless link is successful with a certain value of probability. In particular, this thesis analyses all-to-all broadcast in lossy wireless networks, where every node has a native packet to transmit to all other nodes in the network. A challenge of all-to-all broadcast in lossy wireless networks is the reliability, which is defined as the probability that every node in the network successfully obtains a copy of the native packets of all other nodes. In this thesis, two novel network coding schemes are proposed, which are the neighbour network coding scheme and the random neighbour network coding scheme. In the two proposed network coding schemes, a node may perform a bit-wise exclusive or (XOR) operation to combine the native packet of itself and the native packet of its neighbour, called the coding neighbour, into an XOR coded packet. The reliability of all-to-all broadcast under both the proposed network coding schemes is investigated analytically using Markov chains. It is shown that the reliability of all-to-all broadcast can be improved considerably by employing the proposed network coding schemes, compared with non-coded networks with the same link conditions, i.e. same probabilities of successful packet transmission via wireless channels. Further, the proposed schemes take the link conditions of each node into account to maximise the reliability of a given network. To be more precise, the first scheme proposes the optimal coding neighbour selection method while the second scheme introduces a tuning parameter to control the probability that a node performs network coding at each transmission. The observation that channel condition can have a significant impact on the performance of network coding schemes is expected to be applicable to other network coding schemes for lossy wireless networks

    Network coding meets TCP

    Full text link
    We propose a mechanism that incorporates network coding into TCP with only minor changes to the protocol stack, thereby allowing incremental deployment. In our scheme, the source transmits random linear combinations of packets currently in the congestion window. At the heart of our scheme is a new interpretation of ACKs - the sink acknowledges every degree of freedom (i.e., a linear combination that reveals one unit of new information) even if it does not reveal an original packet immediately. Such ACKs enable a TCP-like sliding-window approach to network coding. Our scheme has the nice property that packet losses are essentially masked from the congestion control algorithm. Our algorithm therefore reacts to packet drops in a smooth manner, resulting in a novel and effective approach for congestion control over networks involving lossy links such as wireless links. Our experiments show that our algorithm achieves higher throughput compared to TCP in the presence of lossy wireless links. We also establish the soundness and fairness properties of our algorithm.Comment: 9 pages, 9 figures, submitted to IEEE INFOCOM 200
    • …
    corecore