128 research outputs found

    CARLA-Loc: Synthetic SLAM Dataset with Full-stack Sensor Setup in Challenging Weather and Dynamic Environments

    Full text link
    The robustness of SLAM algorithms in challenging environmental conditions is crucial for autonomous driving, but the impact of these conditions are unknown while given the difficulty of arbitrarily changing the relevant environmental parameters of the same environment in the real world. Therefore, we propose CARLA-Loc, a synthetic dataset of challenging and dynamic environments built on CARLA simulator. We integrate multiple sensors into the dataset with strict calibration, synchronization and precise timestamping. 7 maps and 42 sequences are posed in our dataset with different dynamic levels and weather conditions. Objects in both stereo images and point clouds are well-segmented with their class labels. We evaluate 5 visual-based and 4 LiDAR-based approaches on varies sequences and analyze the effect of challenging environmental factors on the localization accuracy, showing the applicability of proposed dataset for validating SLAM algorithms

    BEV-Locator: An End-to-end Visual Semantic Localization Network Using Multi-View Images

    Full text link
    Accurate localization ability is fundamental in autonomous driving. Traditional visual localization frameworks approach the semantic map-matching problem with geometric models, which rely on complex parameter tuning and thus hinder large-scale deployment. In this paper, we propose BEV-Locator: an end-to-end visual semantic localization neural network using multi-view camera images. Specifically, a visual BEV (Birds-Eye-View) encoder extracts and flattens the multi-view images into BEV space. While the semantic map features are structurally embedded as map queries sequence. Then a cross-model transformer associates the BEV features and semantic map queries. The localization information of ego-car is recursively queried out by cross-attention modules. Finally, the ego pose can be inferred by decoding the transformer outputs. We evaluate the proposed method in large-scale nuScenes and Qcraft datasets. The experimental results show that the BEV-locator is capable to estimate the vehicle poses under versatile scenarios, which effectively associates the cross-model information from multi-view images and global semantic maps. The experiments report satisfactory accuracy with mean absolute errors of 0.052m, 0.135m and 0.251^\circ in lateral, longitudinal translation and heading angle degree

    RadarSLAM: Radar based Large-Scale SLAM in All Weathers

    Full text link
    Numerous Simultaneous Localization and Mapping (SLAM) algorithms have been presented in last decade using different sensor modalities. However, robust SLAM in extreme weather conditions is still an open research problem. In this paper, RadarSLAM, a full radar based graph SLAM system, is proposed for reliable localization and mapping in large-scale environments. It is composed of pose tracking, local mapping, loop closure detection and pose graph optimization, enhanced by novel feature matching and probabilistic point cloud generation on radar images. Extensive experiments are conducted on a public radar dataset and several self-collected radar sequences, demonstrating the state-of-the-art reliability and localization accuracy in various adverse weather conditions, such as dark night, dense fog and heavy snowfall

    Real-time vehicle detection using low-cost sensors

    Get PDF
    Improving road safety and reducing the number of accidents is one of the top priorities for the automotive industry. As human driving behaviour is one of the top causation factors of road accidents, research is working towards removing control from the human driver by automating functions and finally introducing a fully Autonomous Vehicle (AV). A Collision Avoidance System (CAS) is one of the key safety systems for an AV, as it ensures all potential threats ahead of the vehicle are identified and appropriate action is taken. This research focuses on the task of vehicle detection, which is the base of a CAS, and attempts to produce an effective vehicle detector based on the data coming from a low-cost monocular camera. Developing a robust CAS based on low-cost sensor is crucial to bringing the cost of safety systems down and in this way, increase their adoption rate by end users. In this work, detectors are developed based on the two main approaches to vehicle detection using a monocular camera. The first is the traditional image processing approach where visual cues are utilised to generate potential vehicle locations and at a second stage, verify the existence of vehicles in an image. The second approach is based on a Convolutional Neural Network, a computationally expensive method that unifies the detection process in a single pipeline. The goal is to determine which method is more appropriate for real-time applications. Following the first approach, a vehicle detector based on the combination of HOG features and SVM classification is developed. The detector attempts to optimise performance by modifying the detection pipeline and improve run-time performance. For the CNN-based approach, six different network models are developed and trained end to end using collected data, each with a different network structure and parameters, in an attempt to determine which combination produces the best results. The evaluation of the different vehicle detectors produced some interesting findings; the first approach did not manage to produce a working detector, while the CNN-based approach produced a high performing vehicle detector with an 85.87% average precision and a very low miss rate. The detector managed to perform well under different operational environments (motorway, urban and rural roads) and the results were validated using an external dataset. Additional testing of the vehicle detector indicated it is suitable as a base for safety applications such as CAS, with a run time performance of 12FPS and potential for further improvements.</div

    A Robust Object Detection System for Driverless Vehicles through Sensor Fusion and Artificial Intelligence Techniques

    Get PDF
    Since the early 1990s, various research domains have been concerned with the concept of autonomous driving, leading to the widespread implementation of numerous advanced driver assistance features. However, fully automated vehicles have not yet been introduced to the market. The process of autonomous driving can be outlined through the following stages: environment perception, ego-vehicle localization, trajectory estimation, path planning, and vehicle control. Environment perception is partially based on computer vision algorithms that can detect and track surrounding objects. The process of objects detection performed by autonomous vehicles is considered challenging for several reasons, such as the presence of multiple dynamic objects in the same scene, interaction between objects, real-time speed requirements, and the presence of diverse weather conditions (e.g., rain, snow, fog, etc.). Although many studies have been conducted on objects detection performed by autonomous vehicles, it remains a challenging task, and improving the performance of object detection in diverse driving scenes is an ongoing field. This thesis aims to develop novel methods for the detection and 3D localization of surrounding dynamic objects in driving scenes in different rainy weather conditions. In this thesis, firstly, owing to the frequent occurrence of rain and its negative effect on the performance of objects detection operation, a real-time lightweight deraining network is proposed; it works on single real-time images separately. Rain streaks and the accumulation of rain streaks introduce distinct visual degradation effects to captured images. The proposed deraining network effectively removes both rain streaks and accumulated rain streaks from images. It makes use of the progressive operation of two main stages: rain streaks removal and rain streaks accumulation removal. The rain streaks removal stage is based on a Residual Network (ResNet) to maintain real-time performance and avoid adding to the computational complexity. Furthermore, the application of recursive computations involves the sharing of network parameters. Meanwhile, distant rain streaks accumulate and induce a distortion similar to fogging. Thus, it could be mitigated in a way similar to defogging. This stage relies on a transmission-guided lightweight network (TGL-Net). The proposed deraining network was evaluated on five datasets having synthetic rain of different properties and two other datasets with real rainy scenes. Secondly, an emphasis has been put on proposing a novel sensory system that achieves realtime multiple dynamic objects detection in driving scenes. The proposed sensory system utilizes a monocular camera and a 2D Light Detection and Ranging (LiDAR) sensor in a complementary fusion approach. YOLOv3- a baseline real-time object detection algorithm has been used to detect and classify objects in images captured by the camera; detected objects are surrounded by bounding boxes to localize them within the frames. Since objects present in a driving scene are dynamic and usually occluding each other, an algorithm has been developed to differentiate objects whose bounding boxes are overlapping. Moreover, the locations of bounding boxes within frames (in pixels) are converted into real-world angular coordinates. A 2D LiDAR was used to obtain depth measurements while maintaining low computational requirements in order to save resources for other autonomous driving related operations. A novel technique has been developed and tested for processing and mapping 2D LiDAR measurements with corresponding bounding boxes. The detection accuracy of the proposed system was manually evaluated in different real-time scenarios. Finally, the effectiveness of the proposed deraining network was validated in terms of its impact on objects detection in the context of de-rained images. Results of the proposed deraining network were compared to existing baseline deraining networks and have shown that the running time of the proposed network is 2.23× faster than the average running time of baseline deraining networks while achieving 1.2× improvement when tested on different synthetic datasets. Moreover, tests on the LiDAR measurements showed an average error of ±0.04m in real driving scenes. Also, both deraining and objects detection are jointly tested, and it was demonstrated that performing deraining ahead of objects detection caused 1.45× enhancement in the object detection precision
    corecore