19,772 research outputs found

    Model-Based Feature Selection Based on Radial Basis Functions and Information Measures

    Get PDF
    In this paper the development of a new embedded feature selection method is presented, based on a Radial-Basis-Function Neural-Fuzzy modelling structure. The proposed method is created to find the relative importance of features in a given dataset (or process in general), with special focus on manufacturing processes. The proposed approach evaluates the impact/importance of processes features by using information theoretic measures to measure the correlation between the process features and the modelling performance. Crucially, the proposed method acts during the training of the process model; hence it is an embedded method, achieving the modelling/classification task in parallel to the feature selection task. The latter is achieved by taking advantage of the information in the output layer of the Neural Fuzzy structure; in the presented case this is a TSK-type polynomial function. Two information measures are evaluated in this work, both based on information entropy: mutual information, and cross-sample entropy. The proposed methodology is tested against two popular datasets in the literature (IRIS - plant data, AirFoil - manufacturing/design data), and one more case study relevant to manufacturing - the heat treatment of steel. Results show the good and reliable performance of the developed modelling structure, on par with existing published work, as well as the good performance of the feature selection task in terms of correctly identifying important process features

    Multi-bits biometric string generation based on the likelyhood ratio

    Get PDF
    Preserving the privacy of biometric information stored in biometric systems is becoming a key issue. An important element in privacy protecting biometric systems is the quantizer which transforms a normal biometric template into a binary string. In this paper, we present a user-specific quantization method based on a likelihood ratio approach (LQ). The bits generated from every feature are concatenated to form a fixed length binary string that can be hashed to protect its privacy. Experiments are carried out on both fingerprint data (FVC2000) and face data (FRGC). Results show that our proposed quantization method achieves a reasonably good performance in terms of FAR/FRR (when FAR is 10−4, the corresponding FRR are 16.7% and 5.77% for FVC2000 and FRGC, respectively)

    Evaluation of IoT-Based Computational Intelligence Tools for DNA Sequence Analysis in Bioinformatics

    Full text link
    In contemporary age, Computational Intelligence (CI) performs an essential role in the interpretation of big biological data considering that it could provide all of the molecular biology and DNA sequencing computations. For this purpose, many researchers have attempted to implement different tools in this field and have competed aggressively. Hence, determining the best of them among the enormous number of available tools is not an easy task, selecting the one which accomplishes big data in the concise time and with no error can significantly improve the scientist's contribution in the bioinformatics field. This study uses different analysis and methods such as Fuzzy, Dempster-Shafer, Murphy and Entropy Shannon to provide the most significant and reliable evaluation of IoT-based computational intelligence tools for DNA sequence analysis. The outcomes of this study can be advantageous to the bioinformatics community, researchers and experts in big biological data

    Selection of sensors by a new methodology coupling a classification technique and entropy criteria

    Get PDF
    Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the works on fault detection and diagnosis found in literature emphasis more on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the "Open Plate Reactor (OPR)", developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction
    corecore