178 research outputs found

    Conditioning Text-to-Speech synthesis on dialect accent: a case study

    Get PDF
    Modern text-to-speech systems are modular in many different ways. In recent years, end-users gained the ability to control speech attributes such as degree of emotion, rhythm and timbre, along with other suprasegmental features. More ambitious objectives are related to modelling a combination of speakers and languages, e.g. to enable cross-speaker language transfer. Though, no prior work has been done on the more fine-grained analysis of regional accents. To fill this gap, in this thesis we present practical end-to-end solutions to synthesise speech while controlling within-country variations of the same language, and we do so for 6 different dialects of the British Isles. In particular, we first conduct an extensive study of the speaker verification field and tweak state-of-the-art embedding models to work with dialect accents. Then, we adapt standard acoustic models and voice conversion systems by conditioning them on dialect accent representations and finally compare our custom pipelines with a cutting-edge end-to-end architecture from the multi-lingual world. Results show that the adopted models are suitable and have enough capacity to accomplish the task of regional accent conversion. Indeed, we are able to produce speech closely resembling the selected speaker and dialect accent, where the most accurate synthesis is obtained via careful fine-tuning of the multi-lingual model to the multi-dialect case. Finally, we delineate limitations of our multi-stage approach and propose practical mitigations, to be explored in future work

    Methods for pronunciation assessment in computer aided language learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 149-176).Learning a foreign language is a challenging endeavor that entails acquiring a wide range of new knowledge including words, grammar, gestures, sounds, etc. Mastering these skills all require extensive practice by the learner and opportunities may not always be available. Computer Aided Language Learning (CALL) systems provide non-threatening environments where foreign language skills can be practiced where ever and whenever a student desires. These systems often have several technologies to identify the different types of errors made by a student. This thesis focuses on the problem of identifying mispronunciations made by a foreign language student using a CALL system. We make several assumptions about the nature of the learning activity: it takes place using a dialogue system, it is a task- or game-oriented activity, the student should not be interrupted by the pronunciation feedback system, and that the goal of the feedback system is to identify severe mispronunciations with high reliability. Detecting mispronunciations requires a corpus of speech with human judgements of pronunciation quality. Typical approaches to collecting such a corpus use an expert phonetician to both phonetically transcribe and assign judgements of quality to each phone in a corpus. This is time consuming and expensive. It also places an extra burden on the transcriber. We describe a novel method for obtaining phone level judgements of pronunciation quality by utilizing non-expert, crowd-sourced, word level judgements of pronunciation. Foreign language learners typically exhibit high variation and pronunciation shapes distinct from native speakers that make analysis for mispronunciation difficult. We detail a simple, but effective method for transforming the vowel space of non-native speakers to make mispronunciation detection more robust and accurate. We show that this transformation not only enhances performance on a simple classification task, but also results in distributions that can be better exploited for mispronunciation detection. This transformation of the vowel is exploited to train a mispronunciation detector using a variety of features derived from acoustic model scores and vowel class distributions. We confirm that the transformation technique results in a more robust and accurate identification of mispronunciations than traditional acoustic models.by Mitchell A. Peabody.Ph.D

    Long Term Suboxone™ Emotional Reactivity As Measured by Automatic Detection in Speech

    Get PDF
    Addictions to illicit drugs are among the nation’s most critical public health and societal problems. The current opioid prescription epidemic and the need for buprenorphine/naloxone (Suboxone®; SUBX) as an opioid maintenance substance, and its growing street diversion provided impetus to determine affective states (“true ground emotionality”) in long-term SUBX patients. Toward the goal of effective monitoring, we utilized emotion-detection in speech as a measure of “true” emotionality in 36 SUBX patients compared to 44 individuals from the general population (GP) and 33 members of Alcoholics Anonymous (AA). Other less objective studies have investigated emotional reactivity of heroin, methadone and opioid abstinent patients. These studies indicate that current opioid users have abnormal emotional experience, characterized by heightened response to unpleasant stimuli and blunted response to pleasant stimuli. However, this is the first study to our knowledge to evaluate “true ground” emotionality in long-term buprenorphine/naloxone combination (Suboxone™). We found in long-term SUBX patients a significantly flat affect (p<0.01), and they had less self-awareness of being happy, sad, and anxious compared to both the GP and AA groups. We caution definitive interpretation of these seemingly important results until we compare the emotional reactivity of an opioid abstinent control using automatic detection in speech. These findings encourage continued research strategies in SUBX patients to target the specific brain regions responsible for relapse prevention of opioid addiction.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contract FA8721-05-C-0002

    Hi YouTube! Personality Impressions and Verbal Content in Social Video

    Get PDF
    Despite the evidence that social video conveys rich human personality information, research investigating the automatic prediction of personality impressions in vlogging has shown that, amongst the Big-Five traits, automatic nonverbal be- havioral cues are useful to predict mainly the Extraversion trait. This finding, also reported in other conversational settings, indicates that personality information may be coded in other behavioral dimensions like the verbal channel, which has been less studied in multimodal interaction research. In this paper, we address the task of predicting personality impressions from vloggers based on what they say in their YouTube videos. First, we use manual transcripts of vlogs and verbal content analysis techniques to understand the ability of verbal content for the prediction of crowdsourced Big-Five personality impressions. Second, we explore the feasibility of a fully-automatic framework in which transcripts are obtained using automatic speech recognition (ASR). Our results show that the analysis of error-free verbal content is useful to predict four of the Big-Five traits, three of them better than using nonverbal cues, and that the errors caused by the ASR system decrease the performance signicantly

    Crowd-supervised training of spoken language systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-166).Spoken language systems are often deployed with static speech recognizers. Only rarely are parameters in the underlying language, lexical, or acoustic models updated on-the-fly. In the few instances where parameters are learned in an online fashion, developers traditionally resort to unsupervised training techniques, which are known to be inferior to their supervised counterparts. These realities make the development of spoken language interfaces a difficult and somewhat ad-hoc engineering task, since models for each new domain must be built from scratch or adapted from a previous domain. This thesis explores an alternative approach that makes use of human computation to provide crowd-supervised training for spoken language systems. We explore human-in-the-loop algorithms that leverage the collective intelligence of crowds of non-expert individuals to provide valuable training data at a very low cost for actively deployed spoken language systems. We also show that in some domains the crowd can be incentivized to provide training data for free, as a byproduct of interacting with the system itself. Through the automation of crowdsourcing tasks, we construct and demonstrate organic spoken language systems that grow and improve without the aid of an expert. Techniques that rely on collecting data remotely from non-expert users, however, are subject to the problem of noise. This noise can sometimes be heard in audio collected from poor microphones or muddled acoustic environments. Alternatively, noise can take the form of corrupt data from a worker trying to game the system - for example, a paid worker tasked with transcribing audio may leave transcripts blank in hopes of receiving a speedy payment. We develop strategies to mitigate the effects of noise in crowd-collected data and analyze their efficacy. This research spans a number of different application domains of widely-deployed spoken language interfaces, but maintains the common thread of improving the speech recognizer's underlying models with crowd-supervised training algorithms. We experiment with three central components of a speech recognizer: the language model, the lexicon, and the acoustic model. For each component, we demonstrate the utility of a crowd-supervised training framework. For the language model and lexicon, we explicitly show that this framework can be used hands-free, in two organic spoken language systems.by Ian C. McGraw.Ph.D

    Automatic Pronunciation Assessment -- A Review

    Full text link
    Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.Comment: 9 pages, accepted to EMNLP Finding

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    GREC: Multi-domain Speech Recognition for the Greek Language

    Get PDF
    Μία από τις κορυφαίες προκλήσεις στην Αυτόματη Αναγνώριση Ομιλίας είναι η ανάπτυξη ικανών συστημάτων που μπορούν να έχουν ισχυρή απόδοση μέσα από διαφορετικές συνθήκες ηχογράφησης. Στο παρόν έργο κατασκευάζουμε και αναλύουμε το GREC, μία μεγάλη πολυτομεακή συλλογή δεδομένων για αυτόματη αναγνώριση ομιλίας στην ελληνική γλώσσα. Το GREC αποτελείται από τρεις βάσεις δεδομένων στους θεματικούς τομείς των «εκπομπών ειδήσεων», «ομιλίας από δωρισμένες εγγραφές φωνής», «ηχητικών βιβλίων» και μιας νέας συλλογής δεδομένων στον τομέα των «πολιτικών ομιλιών». Για τη δημιουργία του τελευταίου, συγκεντρώνουμε δεδομένα ομιλίας από ηχογραφήσεις των επίσημων συνεδριάσεων της Βουλής των Ελλήνων, αποδίδοντας ένα σύνολο δεδομένων που αποτελείται από 120 ώρες ομιλίας πολιτικού περιεχομένου. Περιγράφουμε με λεπτομέρεια την καινούρια συλλογή δεδομένων, την προεπεξεργασία και την ευθυγράμμιση ομιλίας, τα οποία βασίζονται στο εργαλείο ανοιχτού λογισμικού Kaldi. Επιπλέον, αξιολογούμε την απόδοση των μοντέλων Gaussian Mixture (GMM) - Hidden Markov (HMM) και Deep Neural Network (DNN) - HMM όταν εφαρμόζονται σε δεδομένα από διαφορετικούς τομείς. Τέλος, προσθέτουμε τη δυνατότητα αυτόματης δεικτοδότησης ομιλητών στο Kaldi-gRPC-Server, ενός εργαλείου γραμμένο σε Python που βασίζεται στο PyKaldi και στο gRPC για βελτιωμένη ανάπτυξη μοντέλων αυτόματης αναγνώρισης ομιλίας.One of the leading challenges in Automatic Speech Recognition (ASR) is the development of robust systems that can perform well under multiple settings. In this work we construct and analyze GREC, a large, multi-domain corpus for automatic speech recognition for the Greek language. GREC is a collection of three available subcorpora over the domains of “news casts”, “crowd-sourced speech”, “audiobooks”, and a new corpus in the domain of “public speeches”. For the creation of the latter, HParl, we collect speech data from recordings of the official proceedings of the Hellenic Parliament, yielding, a dataset which consists of 120 hours of political speech segments. We describe our data collection, pre-processing and alignment setup, which are based on Kaldi toolkit. Furthermore, we perform extensive ablations on the recognition performance of Gaussian Mixture (GMM) - Hidden Markov (HMM) models and Deep Neural Network (DNN) - HMM models over the different domains. Finally, we integrate speaker diarization features to Kaldi-gRPC-Server, a modern, pythonic tool based on PyKaldi and gRPC for streamlined deployment of Kaldi based speech recognition
    corecore