1,376 research outputs found

    Optimized Solar Photovoltaic Generation in a Real Local Distribution Network

    Full text link
    Remarkable penetration of renewable energy in electric networks, despite its valuable opportunities, such as power loss reduction and loadability improvements, has raised concerns for system operators. Such huge penetration can lead to a violation of the grid requirements, such as voltage and current limits and reverse power flow. Optimal placement and sizing of Distributed Generation (DG) are one of the best ways to strengthen the efficiency of the power systems. This paper builds a simulation model for the local distribution network based on obtained load profiles, GIS information, solar insolation, feeder and voltage settings, and define the optimization problem of solar PVDG installation to determine the optimal siting and sizing for different penetration levels with different objective functions. The objective functions include voltage profile improvement and energy loss minimization and the considered constraints include the physical distribution network constraints (AC power flow), the PV capacity constraint, and the voltage and reverse power flow constraints.Comment: To be published (Accepted) in: Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington D.C., USA, 201

    Reliability and Network Performance Enhancement by Reconfiguring Underground Distribution Systems

    Get PDF
    Contemporary distributions are now going to underground their overhead distribution lines due to techno-social reasons. Reliability and loss reduction are the two prime objectives for distribution system operation. Since failure rates of ungrounded cables are the function of Joules heating besides their physical lengths, the reliability evaluation of undergrounded distribution systems needs to be reviewed. This paper suggested a suitable modification in existing reliability indices in order to make them more appropriate for underground distribution systems. A multi-objective network reconfiguration problem is formulated to enhance the reliability and performance of distribution systems while duly addressing the variability and uncertainty in load demand and power generation from renewables. The application results on a standard test bench shift the paradigm of the well-known conflicting nature of reliability and network performance indices defined for overhead distribution systems

    Distribution Network Reconfiguration Considering Feeder Length as a Reliability Index

    Get PDF
    Power distribution network reconfiguration is achieved by opening or closing sectionalizes and tie switches to optimize a set of objectives. Active loss reduction is the objective in the reconfiguration of distribution networks since distribution networks usually record high levels of power losses. Reliability of the network is also an important objective. In this work, the objective function of the optimization is the reduction of power loss, improvement of line loading index and improvement of reliability. This paper seeks to shift the focus from the traditional objectives of passive (without distributed generations) networks to the security and reliability objectives. Since network reconfiguration is a planning problem, the work was performed to solve the problem for multi – period scenarios which spanned 24hrs. Genetic Algorithm was employed in this study and the simulation was performed in MATLAB software environment using a modified IEEE 69 Bus test system

    Simultaneous Placement of Distributed Generation and Reconfiguration in Distribution Networks Using Unified Particle Swarm Optimization

    Get PDF
    The power distribution feeder reconfiguration and optimum placement of distributed generation are two main methods to minimize the active power loss in radial distribution systems. The robustness of the radial distribution system can be improved by simultaneous manipulation of both optimal DG placement and feeder reconfiguration. In this paper, a novel technique is proposed to minimize the power loss with the simultaneous use of feeder reconfiguration and placement of distributed generation. In general, an electrical power network economics primarily relies on the conductor line losses. Hence in this proposed study, the feeder reconfiguration and finding of desirable bus location and operating power of distributed generation is concurrently modeled as an optimization problem for minimizing the real power loss with subject to all operating equality and inequality constraints. This optimization problem is solved with the guide of unified particle swarm optimization algorithm. The system power loss is handled as the cost function for each particle in a swarm. The proposed method is applied to both IEEE 33-bus and IEEE 69-bus radial distribution systems. The prosperous solutions achieved from the simulation studies manifest that the high level of system loss reduction and desirable bus voltage profile, when analyzed against the system with reconfiguration, and the system with DG

    Reliability improvement and loss reduction in radial distribution system with network reconfiguration algorithms using loss sensitivity factor

    Get PDF
    Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network
    • …
    corecore