441 research outputs found

    Object Tracking and Mensuration in Surveillance Videos

    Get PDF
    This thesis focuses on tracking and mensuration in surveillance videos. The first part of the thesis discusses several object tracking approaches based on the different properties of tracking targets. For airborne videos, where the targets are usually small and with low resolutions, an approach of building motion models for foreground/background proposed in which the foreground target is simplified as a rigid object. For relatively high resolution targets, the non-rigid models are applied. An active contour-based algorithm has been introduced. The algorithm is based on decomposing the tracking into three parts: estimate the affine transform parameters between successive frames using particle filters; detect the contour deformation using a probabilistic deformation map, and regulate the deformation by projecting the updated model onto a trained shape subspace. The active appearance Markov chain (AAMC). It integrates a statistical model of shape, appearance and motion. In the AAMC model, a Markov chain represents the switching of motion phases (poses), and several pairwise active appearance model (P-AAM) components characterize the shape, appearance and motion information for different motion phases. The second part of the thesis covers video mensuration, in which we have proposed a heightmeasuring algorithm with less human supervision, more flexibility and improved robustness. From videos acquired by an uncalibrated stationary camera, we first recover the vanishing line and the vertical point of the scene. We then apply a single view mensuration algorithm to each of the frames to obtain height measurements. Finally, using the LMedS as the cost function and the Robbins-Monro stochastic approximation (RMSA) technique to obtain the optimal estimate

    Reliability in Constrained Gauss-Markov Models: An Analytical and Differential Approach with Applications in Photogrammetry

    Get PDF
    This report was prepared by Jackson Cothren, a graduate research associate in the Department of Civil and Environmental Engineering and Geodetic Science at the Ohio State University, under the supervision of Professor Burkhard Schaffrin.This report was also submitted to the Graduate School of the Ohio State University as a dissertation in partial fulfillment of the requirements for the Ph.D. degree.Reliability analysis explains the contribution of each observation in an estimation model to the overall redundancy of the model, taking into account the geometry of the network as well as the precision of the observations themselves. It is principally used to design networks resistant to outliers in the observations by making the outliers more detectible using standard statistical tests.It has been studied extensively, and principally, in Gauss- Markov models. We show how the same analysis may be extended to various constrained Gauss-Markov models and present preliminary work for its use in unconstrained Gauss-Helmert models. In particular, we analyze the prominent reliability matrix of the constrained model to separate the contribution of the constraints to the redundancy of the observations from the observations themselves. In addition, we make extensive use of matrix differential calculus to find the Jacobian of the reliability matrix with respect to the parameters that define the network through both the original design and constraint matrices. The resulting Jacobian matrix reveals the sensitivity of reliability matrix elements highlighting weak areas in the network where changes in observations may result in unreliable observations. We apply the analytical framework to photogrammetric networks in which exterior orientation parameters are directly observed by GPS/INS systems. Tie-point observations provide some redundancy and even a few collinear tie-point and tie-point distance constraints improve the reliability of these direct observations by as much as 33%. Using the same theory we compare networks in which tie-points are observed on multiple images (n-fold points) and tie-points are observed in photo pairs only (two-fold points). Apparently, the use of two-fold tiepoints does not significantly degrade the reliability of the direct exterior observation observations. Coplanarity constraints added to the common two-fold points do not add significantly to the reliability of the direct exterior orientation observations. The differential calculus results may also be used to provide a new measure of redundancy number stability in networks. We show that a typical photogrammetric network with n-fold tie-points was less stable with respect to at least some tie-point movement than an equivalent network with n-fold tie-points decomposed into many two-fold tie-points

    National Aeronautics and Space Administration fundamental research program. Information utilization and evaluation

    Get PDF
    In the second half of the 1980's NASA can expect to face difficult choices among alternative fundamental and applied research, and development projects that could potentially lead to improvements in the information systems used to manage renewable resources. The working group on information utilization and evaluation believes that effective choices cannot be made without a better understanding of the current and prospective problems and opportunities involved in the application of remote sensing to improve renewable research information systems. A renewable resources information system is defined in a broad context to include a flow of data/information from: acquisition through processing, storage, integration with other data, analysis, graphic presentation, decision making, and assessment of the affects of those decisions

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Integrity - A topic for photogrammetry?

    Get PDF
    Photogrammetric methods and sensors like LIDAR, RADAR and cameras are becoming more and more important for new applications like highly automatic driving, since they enable capturing relative information of the ego vehicle w.r.t its environment. Integrity measure the trust that we can put in the navigation information of a system. The concept of integrity was first developed for civil aviation and is linked to reliability concepts well known in geodesy and photogrammetry. Currently, the navigation community is discussing how to guarantee integrity for car navigation and multi-sensor systems. In this paper, we will give a short review on integrity concepts and on the current discussion of how to apply it to car navigation. We will discuss which role photogrammetry could play to solve the open issues in the integrity definition and monitoring for multi-sensor systems. © 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

    Outlier identifiability in time series

    Get PDF
    The occurrence of undetected outliers severely disrupts model building procedures and produces unreliable results. This topic has been widely addressed in the statistical literature. However, little attention has been paid to determine how large an outlier has to be for correct detection of both time and magnitude to safely take place. This issue has been the object of research mainly in geodesy. In this paper, the minimal detectable bias concept is extended to vector time series data, and the risk of accepting an outlier as a clean observation is evaluated according to both the size and power of the statistical tests. This approach seems able to deal with the difficult issues known as masking and swamping. The proposed measure of outlier identifiability helps to determine if any configurations of multiple outliers, also occurring in patches, are easily detectable

    Data Collection and Machine Learning Methods for Automated Pedestrian Facility Detection and Mensuration

    Get PDF
    Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence data is vital to the success of efforts to improve pedestrian facility management, safety analysis, and road network planning. However, this kind of data is typically not available on a large scale due to the high labor and time costs that are the result of relying on manual data collection methods. Therefore, methods for automating this process using techniques such as machine learning are currently being explored by researchers. In our work, we mainly focus on machine learning methods for the detection of crosswalks and sidewalks from both aerial and street-view imagery. We test data from these two viewpoints individually and with an ensemble method that we refer to as our “dual-perspective prediction model”. In order to obtain this data, we developed a data collection pipeline that combines crowdsourced pedestrian facility location data with aerial and street-view imagery from Bing Maps. In addition to the Convolutional Neural Network used to perform pedestrian facility detection using this data, we also trained a segmentation network to measure the length and width of crosswalks from aerial images. In our tests with a dual-perspective image dataset that was heavily occluded in the aerial view but relatively clear in the street view, our dual-perspective prediction model was able to increase prediction accuracy, recall, and precision by 49%, 383%, and 15%, respectively (compared to using a single perspective model based on only aerial view images). In our tests with satellite imagery provided by the Mississippi Department of Transportation, we were able to achieve accuracies as high as 99.23%, 91.26%, and 93.7% for aerial crosswalk detection, aerial sidewalk detection, and aerial crosswalk mensuration, respectively. The final system that we developed packages all of our machine learning models into an easy-to-use system that enables users to process large batches of imagery or examine individual images in a directory using a graphical interface. Our data collection and filtering guidelines can also be used to guide future research in this area by establishing standards for data quality and labelling

    Vision-based legged robot navigation: localisation, local planning, learning

    Get PDF
    The recent advances in legged locomotion control have made legged robots walk up staircases, go deep into underground caves, and walk in the forest. Nevertheless, autonomously achieving this task is still a challenge. Navigating and acomplishing missions in the wild relies not only on robust low-level controllers but also higher-level representations and perceptual systems that are aware of the robot's capabilities. This thesis addresses the navigation problem for legged robots. The contributions are four systems designed to exploit unique characteristics of these platforms, from the sensing setup to their advanced mobility skills over different terrain. The systems address localisation, scene understanding, and local planning, and advance the capabilities of legged robots in challenging environments. The first contribution tackles localisation with multi-camera setups available on legged platforms. It proposes a strategy to actively switch between the cameras and stay localised while operating in a visual teach and repeat context---in spite of transient changes in the environment. The second contribution focuses on local planning, effectively adding a safety layer for robot navigation. The approach uses a local map built on-the-fly to generate efficient vector field representations that enable fast and reactive navigation. The third contribution demonstrates how to improve local planning in natural environments by learning robot-specific traversability from demonstrations. The approach leverages classical and learning-based methods to enable online, onboard traversability learning. These systems are demonstrated via different robot deployments on industrial facilities, underground mines, and parklands. The thesis concludes by presenting a real-world application: an autonomous forest inventory system with legged robots. This last contribution presents a mission planning system for autonomous surveying as well as a data analysis pipeline to extract forestry attributes. The approach was experimentally validated in a field campaign in Finland, evidencing the potential that legged platforms offer for future applications in the wild

    Earth Resources. A continuing bibliography with indexes, issue 25, April 1980

    Get PDF
    The bibliography lists 380 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1980 and March 31, 1990. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    corecore