42,231 research outputs found

    Data-Centric Multiobjective QoS-Aware Routing Protocol for Body Sensor Networks

    Get PDF
    In this paper, we address Quality-of-Service (QoS)-aware routing issue for Body Sensor Networks (BSNs) in delay and reliability domains. We propose a data-centric multiobjective QoS-Aware routing protocol, called DMQoS, which facilitates the system to achieve customized QoS services for each traffic category differentiated according to the generated data types. It uses modular design architecture wherein different units operate in coordination to provide multiple QoS services. Their operation exploits geographic locations and QoS performance of the neighbor nodes and implements a localized hop-by-hop routing. Moreover, the protocol ensures (almost) a homogeneous energy dissipation rate for all routing nodes in the network through a multiobjective Lexicographic Optimization-based geographic forwarding. We have performed extensive simulations of the proposed protocol, and the results show that DMQoS has significant performance improvements over several state-of-the-art approaches

    Energy Aware Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radio networks (CRNs) emerged as a paradigm to solve the problem of limited spectrum availability and the spectrum underutilization in wireless networks by opportunistically exploiting portions of the spectrum temporarily vacated by licensed primary users (PUs). Routing in CRNs is a challenging problem due to the PU activities and mobility. On the other hand, energy aware routing is very important in energy-constraint CRNs. In addition, it is crucial that CR users efficiently exchange data with each other before the appearance of PUs. To design a robust routing scheme for mobile CR ad hoc networks (CRANs), the constraints on residual energy of each CR user, reliability, and the protection of PUs must additionally be taken into account. Moreover, multipath routing has great potential for improving the end-to-end performance of ad hoc networks. Considering all these evidences, in this paper, we propose an energy aware on-demand multipath routing (EOMR) protocol for mobile CRANs to ensure the robustness and to improve the throughput. The proposed routing scheme involves energy efficient multipath route selection and spectrum allocation jointly. The simulation results show that our approach improves the overall performance of the network

    FAR: Face-Aware Routing for Mobicast in Large-Scale Sensor Networks

    Get PDF
    This paper presents FAR, a Face-Aware Routing protocol for mobicast, a spatiotemporal variant of multicast tailored for sensor networks with environmental mobility. FAR features face-routing and timed-forwarding for delivering a message to a mobile delivery zone. Both analytical and statistical results show that, FAR achieves reliable and just-in-time mes-sage delivery with only moderate communication and memory overhead. This paper also presents a novel distributed algorithm for spatial neighborhood discovery for FAR boot-strapping. The spatiotemporal performance and reliability of FAR are demonstrated via ns-2 simulations

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Joint Routing and Congestion Control in Multipath Channel based on Signal to Noise Ratio with Cross Layer Scheme

    Get PDF
    Routing protocol and congestion control in Transmission Control Protocol (TCP) have important roles in wireless mobile network performance. In wireless communication, the stability of the path and successful data transmission will be influenced by the channel condition. This channel condition constraints come from path loss and the multipath channel fading. With these constraints, the algorithm in the routing protocol and congestion control is confronted with the uncertainty of connection quality and probability of successful packet transmission, respectively. It is important to investigate the reliability and robustness of routing protocol and congestion control algorithms in dealing with such situation.  In this paper, we develop a detailed approach and analytical throughput performance with a cross layer scheme (CLS) between routing and congestion control mechanism based on signal to noise ratio (SNR) in Rician and Rayleigh as multipath fading channel. We proposed joint routing and congestion control TCP with a cross layer scheme model based on SNR (RTCP-SNR). We compare the performance of RTCP-SNR with conventional routing-TCP and routing-TCP that used CLS with routing aware (RTCP-RA) model. The analyses and the simulation results showed that RTCP-SNR in a multipath channel outperforms conventional routing-TCP and RTCP-RA

    Wireless Sensor Networks (WSNs): Security and Privacy Issues and Solutions

    Get PDF
    Wireless sensor networks (WSNs) have become one of the current research areas, and it proves to be a very supportive technology for various applications such as environmental-, military-, health-, home-, and office-based applications. WSN can either be mobile wireless sensor network (MWSN) or static wireless sensor network (SWSN). MWSN is a specialized wireless network consisting of considerable number of mobile sensors, however the instability of its topology introduces several performance issues during data routing. SWSNs consisting of static nodes with static topology also share some of the security challenges of MWSNs due to some constraints associated with the sensor nodes. Security, privacy, computation and energy constraints, and reliability issues are the major challenges facing WSNs, especially during routing. To solve these challenges, WSN routing protocols must ensure confidentiality, integrity, privacy preservation, and reliability in the network. Thus, efficient and energy-aware countermeasures have to be designed to prevent intrusion in the network. In this chapter, we describe different forms of WSNs, challenges, solutions, and a point-to-point multi-hop-based secure solution for effective routing in WSNs

    Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks

    Get PDF
    This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN applications having different types of data traffic with several priorities. The protocol achieves to increase Packet Reception Ratio (PRR) and reduce end-to-end delay while considering multi-queue priority policy, two-hop neighborhood information, link reliability and power efficiency. The protocol is modular and utilizes effective methods for estimating the link metrics. Numerical results show that the proposed protocol is a feasible solution to addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page

    SIGNAL STRENGTH AND ENERGY AWARE RELIABLE ROUTE DISCOVERY IN MANET

    Get PDF
    Frequent changes in network topology and confined battery capacity of the mobile devices are the main challenges for routing in ad-hoc networks. In this paper, we propose a novel, Signal strength and Energy Aware routing protocol (SEA-DSR), which directly incorporates signal strength and residual battery capacity of nodes into route selection through cross layer approach. This model defines a metric called Reliability Factor for route selection among the feasible routes. It is simulated using ns2, under different mobility conditions. The simulation results shows better performance in terms of packet delivery ratio, control overhead and average end-end delay. The proposed model has extended the time to network partition and reduce the path breakages when compared with similar routing protocols DSR and SSA
    corecore